BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 32406490)

  • 1. Genome editing strategies for fetal hemoglobin induction in beta-hemoglobinopathies.
    Demirci S; Leonard A; Tisdale JF
    Hum Mol Genet; 2020 Sep; 29(R1):R100-R106. PubMed ID: 32406490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition.
    Traxler EA; Yao Y; Wang YD; Woodard KJ; Kurita R; Nakamura Y; Hughes JR; Hardison RC; Blobel GA; Li C; Weiss MJ
    Nat Med; 2016 Sep; 22(9):987-90. PubMed ID: 27525524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies.
    Paschoudi K; Yannaki E; Psatha N
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin.
    Ravi NS; Wienert B; Wyman SK; Bell HW; George A; Mahalingam G; Vu JT; Prasad K; Bandlamudi BP; Devaraju N; Rajendiran V; Syedbasha N; Pai AA; Nakamura Y; Kurita R; Narayanasamy M; Balasubramanian P; Thangavel S; Marepally S; Velayudhan SR; Srivastava A; DeWitt MA; Crossley M; Corn JE; Mohankumar KM
    Elife; 2022 Feb; 11():. PubMed ID: 35147495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease.
    Demirci S; Leonard A; Essawi K; Tisdale JF
    Mol Ther Methods Clin Dev; 2021 Dec; 23():276-285. PubMed ID: 34729375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo base editing by a single i.v. vector injection for treatment of hemoglobinopathies.
    Li C; Georgakopoulou A; Newby GA; Everette KA; Nizamis E; Paschoudi K; Vlachaki E; Gil S; Anderson AK; Koob T; Huang L; Wang H; Kiem HP; Liu DR; Yannaki E; Lieber A
    JCI Insight; 2022 Oct; 7(19):. PubMed ID: 36006707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advance on genome editing for therapy of β-hemoglobinopathies.
    Liu JW; Hong T; Qin X; Liang YM; Zhang P
    Yi Chuan; 2018 Feb; 40(2):95-103. PubMed ID: 29428902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus.
    Antoniani C; Meneghini V; Lattanzi A; Felix T; Romano O; Magrin E; Weber L; Pavani G; El Hoss S; Kurita R; Nakamura Y; Cradick TJ; Lundberg AS; Porteus M; Amendola M; El Nemer W; Cavazzana M; Mavilio F; Miccio A
    Blood; 2018 Apr; 131(17):1960-1973. PubMed ID: 29519807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies.
    Magrin E; Miccio A; Cavazzana M
    Blood; 2019 Oct; 134(15):1203-1213. PubMed ID: 31467062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease.
    Khosravi MA; Abbasalipour M; Concordet JP; Berg JV; Zeinali S; Arashkia A; Azadmanesh K; Buch T; Karimipoor M
    Eur J Pharmacol; 2019 Jul; 854():398-405. PubMed ID: 31039344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome editing approaches to β-hemoglobinopathies.
    Brusson M; Miccio A
    Prog Mol Biol Transl Sci; 2021; 182():153-183. PubMed ID: 34175041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wake-up Sleepy Gene: Reactivating Fetal Globin for β-Hemoglobinopathies.
    Wienert B; Martyn GE; Funnell APW; Quinlan KGR; Crossley M
    Trends Genet; 2018 Dec; 34(12):927-940. PubMed ID: 30287096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of lentiviral gene transfer approaches designed to promote fetal hemoglobin production for the treatment of β-hemoglobinopathies.
    Daniel-Moreno A; Lamsfus-Calle A; Wilber A; Chambers CB; Johnston I; Antony JS; Epting T; Handgretinger R; Mezger M
    Blood Cells Mol Dis; 2020 Sep; 84():102456. PubMed ID: 32498026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal Gene Correction Approaches for β-hemoglobinopathies Using CRISPR-Cas9 and Adeno-Associated Virus Serotype 6 Donor Templates.
    Lamsfus-Calle A; Daniel-Moreno A; Ureña-Bailén G; Rottenberger J; Raju J; Epting T; Marciano S; Heumos L; Baskaran P; S Antony J; Handgretinger R; Mezger M
    CRISPR J; 2021 Apr; 4(2):207-222. PubMed ID: 33876951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of Developmental Gamma-Globin Gene Expression: an Approach for Healing Hemoglobinopathies.
    Venkatesan V; Srinivasan S; Babu P; Thangavel S
    Mol Cell Biol; 2020 Dec; 41(1):. PubMed ID: 33077498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of CRISPR/Cas9 Delivery to Human Hematopoietic Stem and Progenitor Cells for Therapeutic Genomic Rearrangements.
    Lattanzi A; Meneghini V; Pavani G; Amor F; Ramadier S; Felix T; Antoniani C; Masson C; Alibeu O; Lee C; Porteus MH; Bao G; Amendola M; Mavilio F; Miccio A
    Mol Ther; 2019 Jan; 27(1):137-150. PubMed ID: 30424953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in globin research using genome-wide association studies and gene editing.
    Orkin SH
    Ann N Y Acad Sci; 2016 Mar; 1368(1):5-10. PubMed ID: 26866328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Original Research: Generation of non-deletional hereditary persistence of fetal hemoglobin β-globin locus yeast artificial chromosome transgenic mouse models: -175 Black HPFH and -195 Brazilian HPFH.
    Braghini CA; Costa FC; Fedosyuk H; Neades RY; Novikova LV; Parker MP; Winefield RD; Peterson KR
    Exp Biol Med (Maywood); 2016 Apr; 241(7):697-705. PubMed ID: 26946532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting fetal hemoglobin expression to treat β hemoglobinopathies.
    Steinberg MH
    Expert Opin Ther Targets; 2022 Apr; 26(4):347-359. PubMed ID: 35418266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype.
    Weber L; Frati G; Felix T; Hardouin G; Casini A; Wollenschlaeger C; Meneghini V; Masson C; De Cian A; Chalumeau A; Mavilio F; Amendola M; Andre-Schmutz I; Cereseto A; El Nemer W; Concordet JP; Giovannangeli C; Cavazzana M; Miccio A
    Sci Adv; 2020 Feb; 6(7):. PubMed ID: 32917636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.