BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 32406500)

  • 1. Cargo crowding contributes to sorting stringency in COPII vesicles.
    Gomez-Navarro N; Melero A; Li XH; Boulanger J; Kukulski W; Miller EA
    J Cell Biol; 2020 Jul; 219(7):. PubMed ID: 32406500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secretory bulk flow of soluble proteins is efficient and COPII dependent.
    Phillipson BA; Pimpl P; daSilva LL; Crofts AJ; Taylor JP; Movafeghi A; Robinson DG; Denecke J
    Plant Cell; 2001 Sep; 13(9):2005-20. PubMed ID: 11549760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles.
    Otte S; Barlowe C
    Nat Cell Biol; 2004 Dec; 6(12):1189-94. PubMed ID: 15516922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator.
    Fu L; Sztul E
    J Cell Biol; 2003 Jan; 160(2):157-63. PubMed ID: 12538638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The yeast p24 complex is required for the formation of COPI retrograde transport vesicles from the Golgi apparatus.
    Aguilera-Romero A; Kaminska J; Spang A; Riezman H; Muñiz M
    J Cell Biol; 2008 Feb; 180(4):713-20. PubMed ID: 18283113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traffic of p24 Proteins and COPII Coat Composition Mutually Influence Membrane Scaffolding.
    D'Arcangelo JG; Crissman J; Pagant S; Čopič A; Latham CF; Snapp EL; Miller EA
    Curr Biol; 2015 May; 25(10):1296-305. PubMed ID: 25936552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle.
    Lee MC; Orci L; Hamamoto S; Futai E; Ravazzola M; Schekman R
    Cell; 2005 Aug; 122(4):605-17. PubMed ID: 16122427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auxilin facilitates membrane traffic in the early secretory pathway.
    Ding J; Segarra VA; Chen S; Cai H; Lemmon SK; Ferro-Novick S
    Mol Biol Cell; 2016 Jan; 27(1):127-36. PubMed ID: 26538028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles.
    Kuehn MJ; Herrmann JM; Schekman R
    Nature; 1998 Jan; 391(6663):187-90. PubMed ID: 9428766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14.
    Herzig Y; Sharpe HJ; Elbaz Y; Munro S; Schuldiner M
    PLoS Biol; 2012; 10(5):e1001329. PubMed ID: 22629230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. COPII proteins are required for Golgi fusion but not for endoplasmic reticulum budding of the pre-chylomicron transport vesicle.
    Siddiqi SA; Gorelick FS; Mahan JT; Mansbach CM
    J Cell Sci; 2003 Jan; 116(Pt 2):415-27. PubMed ID: 12482926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncoupled packaging of targeting and cargo molecules during transport vesicle budding from the endoplasmic reticulum.
    Yeung T; Barlowe C; Schekman R
    J Biol Chem; 1995 Dec; 270(51):30567-70. PubMed ID: 8530490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both Svp26 and Mnn6 are required for the efficient ER exit of Mnn4 in Saccharomyces cerevisiae.
    Noda Y; Arai S; Wada I; Yoda K
    J Gen Appl Microbiol; 2019 Dec; 65(5):215-224. PubMed ID: 30842360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Erv29p in collecting soluble secretory proteins into ER-derived transport vesicles.
    Belden WJ; Barlowe C
    Science; 2001 Nov; 294(5546):1528-31. PubMed ID: 11711675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with endoplasmic reticulum exit sites.
    Yang YD; Elamawi R; Bubeck J; Pepperkok R; Ritzenthaler C; Robinson DG
    Plant Cell; 2005 May; 17(5):1513-31. PubMed ID: 15805489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of COPII Vesicles Indicates a Role for the Emp47-Ssp120 Complex in Transport of Cell Surface Glycoproteins.
    Margulis NG; Wilson JD; Bentivoglio CM; Dhungel N; Gitler AD; Barlowe C
    Traffic; 2016 Mar; 17(3):191-210. PubMed ID: 26650540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligomerization of a cargo receptor directs protein sorting into COPII-coated transport vesicles.
    Sato K; Nakano A
    Mol Biol Cell; 2003 Jul; 14(7):3055-63. PubMed ID: 12857885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surf4 (Erv29p) binds amino-terminal tripeptide motifs of soluble cargo proteins with different affinities, enabling prioritization of their exit from the endoplasmic reticulum.
    Yin Y; Garcia MR; Novak AJ; Saunders AM; Ank RS; Nam AS; Fisher LW
    PLoS Biol; 2018 Aug; 16(8):e2005140. PubMed ID: 30086131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genetic link between the unfolded protein response and vesicle formation from the endoplasmic reticulum.
    Higashio H; Kohno K
    Biochem Biophys Res Commun; 2002 Aug; 296(3):568-74. PubMed ID: 12176018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dissection of Erv26p identifies separable cargo binding and coat protein sorting activities.
    Bue CA; Barlowe C
    J Biol Chem; 2009 Sep; 284(36):24049-60. PubMed ID: 19574229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.