BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3240651)

  • 1. The effect of the skull of low-birthweight neonates on applied potential tomography imaging of centralised resistivity changes.
    McArdle FJ; Brown BH; Pearse RG; Barber DC
    Clin Phys Physiol Meas; 1988; 9 Suppl A():55-60. PubMed ID: 3240651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a 3D reconstruction algorithm for EIT of human brain function in a realistic head-shaped tank.
    Tidswell AT; Gibson A; Bayford RH; Holder DS
    Physiol Meas; 2001 Feb; 22(1):177-85. PubMed ID: 11236878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel 3D-printed head phantom with anatomically realistic geometry and continuously varying skull resistivity distribution for electrical impedance tomography.
    Zhang J; Yang B; Li H; Fu F; Shi X; Dong X; Dai M
    Sci Rep; 2017 Jul; 7(1):4608. PubMed ID: 28676697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of electrical current density distribution in a simple head phantom with magnetic resonance imaging.
    Gamba HR; Bayford R; Holder D
    Phys Med Biol; 1999 Jan; 44(1):281-91. PubMed ID: 10071889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional finite element modelling of the neonatal head.
    Gibson A; Bayford RH; Holder DS
    Physiol Meas; 2000 Feb; 21(1):45-52. PubMed ID: 10719998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models.
    Odabaee M; Tokariev A; Layeghy S; Mesbah M; Colditz PB; Ramon C; Vanhatalo S
    Neuroimage; 2014 Aug; 96():73-80. PubMed ID: 24736169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new head phantom with realistic shape and spatially varying skull resistivity distribution.
    Li JB; Tang C; Dai M; Liu G; Shi XT; Yang B; Xu CH; Fu F; You FS; Tang MX; Dong XZ
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):254-63. PubMed ID: 24196845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image reconstruction incorporated with the skull inhomogeneity for electrical impedance tomography.
    Ni A; Dong X; Yang G; Fu F; Tang C
    Comput Med Imaging Graph; 2008 Jul; 32(5):409-15. PubMed ID: 18501557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance changes during evoked nervous activity in human subjects: implications for the application of applied potential tomography (APT) to imaging neuronal discharge.
    Holder DS
    Clin Phys Physiol Meas; 1989 Aug; 10(3):267-74. PubMed ID: 2627768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of anisotropic modelling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head.
    Abascal JF; Arridge SR; Atkinson D; Horesh R; Fabrizi L; De Lucia M; Horesh L; Bayford RH; Holder DS
    Neuroimage; 2008 Nov; 43(2):258-68. PubMed ID: 18694835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method.
    Bagshaw AP; Liston AD; Bayford RH; Tizzard A; Gibson AP; Tidswell AT; Sparkes MK; Dehghani H; Binnie CD; Holder DS
    Neuroimage; 2003 Oct; 20(2):752-64. PubMed ID: 14568449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some possible neurological applications of applied potential tomography.
    Holder DS; Gardner-Medwin AR
    Clin Phys Physiol Meas; 1988; 9 Suppl A():111-9. PubMed ID: 3240638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical impedance tomography; the construction and application to physiological measurement of electrical impedance images.
    Brown BH; Barber DC
    Med Prog Technol; 1987; 13(2):69-75. PubMed ID: 3441245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the distortion of EEG signals caused by a hole in the skull mimicking the fontanel in the skull of human neonates.
    Flemming L; Wang Y; Caprihan A; Eiselt M; Haueisen J; Okada Y
    Clin Neurophysiol; 2005 May; 116(5):1141-52. PubMed ID: 15826855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography.
    Fernandez-Corazza M; Turovets S; Luu P; Price N; Muravchik CH; Tucker D
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1785-1797. PubMed ID: 29989921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of head conductivity frequency response in vivo with optimized EIT-EEG.
    Dabek J; Kalogianni K; Rotgans E; van der Helm FCT; Kwakkel G; van Wegen EEH; Daffertshofer A; de Munck JC
    Neuroimage; 2016 Feb; 127():484-495. PubMed ID: 26589336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical impedance tomography (EIT) of brain function.
    Holder DS
    Brain Topogr; 1992; 5(2):87-93. PubMed ID: 1489654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive reflection mode photoacoustic imaging through infant skull toward imaging of neonatal brains.
    Wang X; Chamberland DL; Xi G
    J Neurosci Methods; 2008 Mar; 168(2):412-21. PubMed ID: 18155298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new magnetic resonance electrical impedance tomography (MREIT) algorithm: the RSM-MREIT algorithm with applications to estimation of human head conductivity.
    Gao N; Zhu SA; He B
    Phys Med Biol; 2006 Jun; 51(12):3067-83. PubMed ID: 16757863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thickness and resistivity variations over the upper surface of the human skull.
    Law SK
    Brain Topogr; 1993; 6(2):99-109. PubMed ID: 8123431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.