These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32406515)

  • 1. Using UAV-based remote sensing to assess grapevine canopy damage due to fire smoke.
    Brunori E; Maesano M; Moresi FV; Antolini A; Bellincontro A; Forniti R; Biasi R; Mencarelli F
    J Sci Food Agric; 2020 Sep; 100(12):4531-4539. PubMed ID: 32406515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Evaluation of a Vineyard-Based Strategy To Mitigate Smoke-Taint in Wine Grapes.
    Favell JW; Noestheden M; Lyons SM; Zandberg WF
    J Agric Food Chem; 2019 Dec; 67(51):14137-14142. PubMed ID: 31802665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitating Volatile Phenols in Cabernet Franc Berries and Wine after On-Vine Exposure to Smoke from a Simulated Forest Fire.
    Noestheden M; Dennis EG; Zandberg WF
    J Agric Food Chem; 2018 Jan; 66(3):695-703. PubMed ID: 29244496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smoke from simulated forest fire alters secondary metabolites in Vitis vinifera L. berries and wine.
    Noestheden M; Noyovitz B; Riordan-Short S; Dennis EG; Zandberg WF
    Planta; 2018 Dec; 248(6):1537-1550. PubMed ID: 30151661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and Glycosylation of Smoke-Derived Volatile Phenols by Cabernet Sauvignon Grapes and Their Subsequent Fate during Winemaking.
    Szeto C; Ristic R; Capone D; Puglisi C; Pagay V; Culbert J; Jiang W; Herderich M; Tuke J; Wilkinson K
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32824099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Invasive Tools to Detect Smoke Contamination in Grapevine Canopies, Berries and Wine: A Remote Sensing and Machine Learning Modeling Approach.
    Fuentes S; Tongson EJ; De Bei R; Gonzalez Viejo C; Ristic R; Tyerman S; Wilkinson K
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31366016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smoke-derived taint in wine: the release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke.
    Kennison KR; Gibberd MR; Pollnitz AP; Wilkinson KL
    J Agric Food Chem; 2008 Aug; 56(16):7379-83. PubMed ID: 18680304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed characterization of glycosylated sensory-active volatile phenols in smoke-exposed grapes and wine.
    Noestheden M; Dennis EG; Romero-Montalvo E; DiLabio GA; Zandberg WF
    Food Chem; 2018 Sep; 259():147-156. PubMed ID: 29680037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compositional Changes in Grapes and Leaves as a Consequence of Smoke Exposure of Vineyards from Multiple Bushfires across a Ripening Season.
    Jiang W; Parker M; Hayasaka Y; Simos C; Herderich M
    Molecules; 2021 May; 26(11):. PubMed ID: 34073537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosylation of Volatile Phenols in Grapes following Pre-Harvest (On-Vine) vs. Post-Harvest (Off-Vine) Exposure to Smoke.
    Culbert JA; Jiang W; Ristic R; Puglisi CJ; Nixon EC; Shi H; Wilkinson KL
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and Utilization of a Model System to Evaluate the Potential of Surface Coatings for Protecting Grapes from Volatile Phenols Implicated in Smoke Taint.
    Culbert JA; Krstic MP; Herderich MJ
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar.
    Alabi OJ; Casassa LF; Gutha LR; Larsen RC; Henick-Kling T; Harbertson JF; Naidu RA
    PLoS One; 2016; 11(2):e0149666. PubMed ID: 26919614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of volatile phenol glycoconjugates in grapes following grapevine exposure to smoke and potential mitigation of smoke taint by foliar application of kaolin.
    van der Hulst L; Munguia P; Culbert JA; Ford CM; Burton RA; Wilkinson KL
    Planta; 2019 Mar; 249(3):941-952. PubMed ID: 30612169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pinot Noir wine composition from different vine vigour zones classified by remote imaging technology.
    Song J; Smart RE; Dambergs RG; Sparrow AM; Wells RB; Wang H; Qian MC
    Food Chem; 2014 Jun; 153():52-9. PubMed ID: 24491699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Within-Vineyard, Within-Vine, and Within-Bunch Variability of the Rotundone Concentration in Berries of Vitis vinifera L. cv. Shiraz.
    Zhang P; Barlow S; Krstic M; Herderich M; Fuentes S; Howell K
    J Agric Food Chem; 2015 May; 63(17):4276-83. PubMed ID: 25891266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thinking Inside the Box: A Novel Approach to Smoke Taint Mitigation Trials.
    Szeto C; Ristic R; Wilkinson K
    Molecules; 2022 Mar; 27(5):. PubMed ID: 35268767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Techniques for Mitigating the Effects of Smoke Taint While Maintaining Quality in Wine Production: A Review.
    Mirabelli-Montan YA; Marangon M; Graça A; Mayr Marangon CM; Wilkinson KL
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33802808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitating Organoleptic Volatile Phenols in Smoke-Exposed Vitis vinifera Berries.
    Noestheden M; Thiessen K; Dennis EG; Tiet B; Zandberg WF
    J Agric Food Chem; 2017 Sep; 65(38):8418-8425. PubMed ID: 28849932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial shading of Cabernet Sauvignon and Shiraz vines altered wine color and mouthfeel attributes, but increased exposure had little impact.
    Joscelyne VL; Downey MO; Mazza M; Bastian SE
    J Agric Food Chem; 2007 Dec; 55(26):10888-96. PubMed ID: 18052125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure of grapes to smoke of vegetation with varying lignin composition and accretion of lignin derived putative smoke taint compounds in wine.
    Kelly D; Zerihun A; Singh DP; Vitzthum von Eckstaedt C; Gibberd M; Grice K; Downey M
    Food Chem; 2012 Nov; 135(2):787-98. PubMed ID: 22868160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.