These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32406692)

  • 1. Origin of Superionic Li
    Li X; Liang J; Adair KR; Li J; Li W; Zhao F; Hu Y; Sham TK; Zhang L; Zhao S; Lu S; Huang H; Li R; Chen N; Sun X
    Nano Lett; 2020 Jun; 20(6):4384-4392. PubMed ID: 32406692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal Halide Superionic Conductors for All-Solid-State Batteries.
    Liang J; Li X; Adair KR; Sun X
    Acc Chem Res; 2021 Feb; 54(4):1023-1033. PubMed ID: 33508944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-Occupation-Tuned Superionic Li
    Liang J; Li X; Wang S; Adair KR; Li W; Zhao Y; Wang C; Hu Y; Zhang L; Zhao S; Lu S; Huang H; Li R; Mo Y; Sun X
    J Am Chem Soc; 2020 Apr; 142(15):7012-7022. PubMed ID: 32212650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte.
    Li X; Liang J; Chen N; Luo J; Adair KR; Wang C; Banis MN; Sham TK; Zhang L; Zhao S; Lu S; Huang H; Li R; Sun X
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16427-16432. PubMed ID: 31476261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superionic Conducting Halide Frameworks Enabled by Interface-Bonded Halides.
    Fu J; Wang S; Liang J; Alahakoon SH; Wu D; Luo J; Duan H; Zhang S; Zhao F; Li W; Li M; Hao X; Li X; Chen J; Chen N; King G; Chang LY; Li R; Huang Y; Gu M; Sham TK; Mo Y; Sun X
    J Am Chem Soc; 2023 Feb; 145(4):2183-2194. PubMed ID: 36583711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlated factors for Li-ion migration in ionic conductors with the fcc anion sublattice.
    Ouyang R; Xu Z; Zhu H
    J Chem Phys; 2023 May; 158(17):. PubMed ID: 37129138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospects of halide-based all-solid-state batteries: From material design to practical application.
    Wang C; Liang J; Kim JT; Sun X
    Sci Adv; 2022 Sep; 8(36):eadc9516. PubMed ID: 36070390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design principles for solid-state lithium superionic conductors.
    Wang Y; Richards WD; Ong SP; Miara LJ; Kim JC; Mo Y; Ceder G
    Nat Mater; 2015 Oct; 14(10):1026-31. PubMed ID: 26280225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Li-Ion Cooperative Migration and Oxy-Sulfide Synergistic Effect in Li
    Zhang B; Weng M; Lin Z; Feng Y; Yang L; Wang LW; Pan F
    Small; 2020 Mar; 16(11):e1906374. PubMed ID: 32077623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Origin of Superionic Lithium Diffusion in Anion-Disordered Li
    Morgan BJ
    Chem Mater; 2021 Mar; 33(6):2004-2018. PubMed ID: 33840894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of Outstanding Phase and Moisture Stability in a Na
    Shang SL; Yu Z; Wang Y; Wang D; Liu ZK
    ACS Appl Mater Interfaces; 2017 May; 9(19):16261-16269. PubMed ID: 28453260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li
    Kraft MA; Culver SP; Calderon M; Böcher F; Krauskopf T; Senyshyn A; Dietrich C; Zevalkink A; Janek J; Zeier WG
    J Am Chem Soc; 2017 Aug; 139(31):10909-10918. PubMed ID: 28741936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composite Electrolyte for All-Solid-State Lithium Batteries: Low-Temperature Fabrication and Conductivity Enhancement.
    Lee SD; Jung KN; Kim H; Shin HS; Song SW; Park MS; Lee JW
    ChemSusChem; 2017 May; 10(10):2175-2181. PubMed ID: 28317277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect.
    Deng Y; Eames C; Fleutot B; David R; Chotard JN; Suard E; Masquelier C; Islam MS
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7050-7058. PubMed ID: 28128548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li(+) conductivity of Li7La3Zr2O12 lithium garnet.
    Dhivya L; Murugan R
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17606-15. PubMed ID: 25265573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stacking Faults Assist Lithium-Ion Conduction in a Halide-Based Superionic Conductor.
    Sebti E; Evans HA; Chen H; Richardson PM; White KM; Giovine R; Koirala KP; Xu Y; Gonzalez-Correa E; Wang C; Brown CM; Cheetham AK; Canepa P; Clément RJ
    J Am Chem Soc; 2022 Apr; 144(13):5795-5811. PubMed ID: 35325534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization.
    Dai J; Yang C; Wang C; Pastel G; Hu L
    Adv Mater; 2018 Nov; 30(48):e1802068. PubMed ID: 30302834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries.
    Wang C; Fu K; Kammampata SP; McOwen DW; Samson AJ; Zhang L; Hitz GT; Nolan AM; Wachsman ED; Mo Y; Thangadurai V; Hu L
    Chem Rev; 2020 May; 120(10):4257-4300. PubMed ID: 32271022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution.
    Adeli P; Bazak JD; Park KH; Kochetkov I; Huq A; Goward GR; Nazar LF
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8681-8686. PubMed ID: 31041839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.