BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 32407318)

  • 1. Production location of the gelling agent Phytagel has a significant impact on Arabidopsis thaliana seedling phenotypic analysis.
    Jacques CN; Hulbert AK; Westenskow S; Neff MM
    PLoS One; 2020; 15(5):e0228515. PubMed ID: 32407318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis.
    Street IH; Shah PK; Smith AM; Avery N; Neff MM
    Plant J; 2008 Apr; 54(1):1-14. PubMed ID: 18088311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Edaphic history over seedling characters predicts integration and plasticity of integration across geologically variable populations of
    Cousins EA; Murren CJ
    Am J Bot; 2017 Dec; 104(12):1802-1815. PubMed ID: 29196342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CATALASE2 functions for seedling postgerminative growth by scavenging H
    Liu WC; Han TT; Yuan HM; Yu ZD; Zhang LY; Zhang BL; Zhai S; Zheng SQ; Lu YT
    Plant Cell Environ; 2017 Nov; 40(11):2720-2728. PubMed ID: 28722222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A root penetration model of Arabidopsis thaliana in phytagel medium with different strength.
    Yan J; Wang B; Zhou Y
    J Plant Res; 2017 Sep; 130(5):941-950. PubMed ID: 28315970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Predictive Coexpression Network Identifies Novel Genes Controlling the Seed-to-Seedling Phase Transition in Arabidopsis thaliana.
    Silva AT; Ribone PA; Chan RL; Ligterink W; Hilhorst HW
    Plant Physiol; 2016 Apr; 170(4):2218-31. PubMed ID: 26888061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain.
    Zhao J; Favero DS; Peng H; Neff MM
    Proc Natl Acad Sci U S A; 2013 Nov; 110(48):E4688-97. PubMed ID: 24218605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade.
    Vellosillo T; Martínez M; López MA; Vicente J; Cascón T; Dolan L; Hamberg M; Castresana C
    Plant Cell; 2007 Mar; 19(3):831-46. PubMed ID: 17369372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-Lapse Imaging to Examine the Growth Kinetics of Arabidopsis Seedlings in Response to Ethylene.
    Binder BM
    Methods Mol Biol; 2017; 1573():211-222. PubMed ID: 28293848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brassinosteroid signaling converges with SUPPRESSOR OF PHYTOCHROME B4-#3 to influence the expression of SMALL AUXIN UP RNA genes and hypocotyl growth.
    Favero DS; Le KN; Neff MM
    Plant J; 2017 Mar; 89(6):1133-1145. PubMed ID: 27984677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic effect of growth media on
    Claeijs N; Vissenberg K
    Plant Signal Behav; 2022 Dec; 17(1):2104002. PubMed ID: 36000477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of Root Genes in Arabidopsis Seedlings Grown by Standard and Improved Growing Methods.
    Qu Y; Liu S; Bao W; Xue X; Ma Z; Yokawa K; Baluška F; Wan Y
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28467358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overaccumulation of γ-Glutamylcysteine in a Jasmonate-Hypersensitive Arabidopsis Mutant Causes Jasmonate-Dependent Growth Inhibition.
    Wei HH; Rowe M; Riethoven JJ; Grove R; Adamec J; Jikumaru Y; Staswick P
    Plant Physiol; 2015 Oct; 169(2):1371-81. PubMed ID: 26282239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of two L-Galactono-1,4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana.
    Gao Y; Badejo AA; Sawa Y; Ishikawa T
    Plant Cell Physiol; 2012 Mar; 53(3):592-601. PubMed ID: 22323769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR396a-Mediated basic helix-loop-helix transcription factor bHLH74 repression acts as a regulator for root growth in Arabidopsis seedlings.
    Bao M; Bian H; Zha Y; Li F; Sun Y; Bai B; Chen Z; Wang J; Zhu M; Han N
    Plant Cell Physiol; 2014 Jul; 55(7):1343-53. PubMed ID: 24793750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of root UV-B sensing in Arabidopsis early seedling development.
    Tong H; Leasure CD; Hou X; Yuen G; Briggs W; He ZH
    Proc Natl Acad Sci U S A; 2008 Dec; 105(52):21039-44. PubMed ID: 19075229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ANN1 and ANN2 Function in Post-Phloem Sugar Transport in Root Tips to Affect Primary Root Growth.
    Wang J; Song J; Clark G; Roux SJ
    Plant Physiol; 2018 Sep; 178(1):390-401. PubMed ID: 30018170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development.
    Kim H; Park PJ; Hwang HJ; Lee SY; Oh MH; Kim SG
    Biosci Biotechnol Biochem; 2006 Apr; 70(4):768-73. PubMed ID: 16636440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The metabolic acclimation of Arabidopsis thaliana to arsenate is sensitized by the loss of mitochondrial LIPOAMIDE DEHYDROGENASE2, a key enzyme in oxidative metabolism.
    Chen W; Taylor NL; Chi Y; Millar AH; Lambers H; Finnegan PM
    Plant Cell Environ; 2014 Mar; 37(3):684-95. PubMed ID: 23961884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.
    Contreras-Cornejo HA; Macías-Rodríguez L; Alfaro-Cuevas R; López-Bucio J
    Mol Plant Microbe Interact; 2014 Jun; 27(6):503-14. PubMed ID: 24502519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.