BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32407341)

  • 1. Automatic three-dimensional reconstruction of fascicles in peripheral nerves from histological images.
    Tovbis D; Agur A; Mogk JPM; Zariffa J
    PLoS One; 2020; 15(5):e0233028. PubMed ID: 32407341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research of histochemical staining for identifying the function and morphology of fascicles in three-dimensional reconstruction of peripheral nerves].
    Luo P; Zhang Y; Qi J; Zhong Y; Liu X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Apr; 26(4):477-82. PubMed ID: 22568333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional reconstruction of internal fascicles and microvascular structures of human peripheral nerves.
    Yan L; Liu S; Qi J; Zhang Z; Zhong J; Li Q; Liu X; Zhu Q; Yao Z; Lu Y; Gu L
    Int J Numer Method Biomed Eng; 2019 Oct; 35(10):e3245. PubMed ID: 31370097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Key technologies of functional fascicular groups three dimensional visualization of long segmented peripheral nerve based on two-time imaging technique and automatic registration].
    Zhang Y; Liu X; Zhong Y; Tang P; Zhou J; Qi J; He C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Mar; 24(3):325-31. PubMed ID: 20369535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An enhanced staining method K-B-2R staining for three-dimensional nerve reconstruction.
    Luo P; Dong J; Qi J; Zhang Y; Liu X; Zhong Y; Xian CJ; Wang L
    BMC Neurosci; 2019 Jul; 20(1):32. PubMed ID: 31286881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid micro-magnetic resonance imaging scanning for three-dimensional reconstruction of peripheral nerve fascicles.
    Yao Z; Yan LW; Wang T; Qiu S; Lin T; He FL; Yuan RH; Liu XL; Qi J; Zhu QT
    Neural Regen Res; 2018 Nov; 13(11):1953-1960. PubMed ID: 30233069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic extraction of proximal femur contours from calibrated X-ray images using 3D statistical models: an in vitro study.
    Dong X; Zheng G
    Int J Med Robot; 2009 Jun; 5(2):213-22. PubMed ID: 19343704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D reconstruction of peripheral nerves from optical projection tomography images: A method for studying fascicular interconnections and intraneural plexuses.
    Prats-Galino A; Čapek M; Reina MA; Cvetko E; Radochova B; Tubbs RS; Damjanovska M; Stopar Pintarič T
    Clin Anat; 2018 Apr; 31(3):424-431. PubMed ID: 29197131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iodine and freeze-drying enhanced high-resolution MicroCT imaging for reconstructing 3D intraneural topography of human peripheral nerve fascicles.
    Yan L; Guo Y; Qi J; Zhu Q; Gu L; Zheng C; Lin T; Lu Y; Zeng Z; Yu S; Zhu S; Zhou X; Zhang X; Du Y; Yao Z; Lu Y; Liu X
    J Neurosci Methods; 2017 Aug; 287():58-67. PubMed ID: 28634148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional display of peripheral nerves in the wrist region based on MR diffusion tensor imaging and maximum intensity projection post-processing.
    Ding WQ; Zhou XJ; Tang JB; Gu JH; Jin DS
    Eur J Radiol; 2015 Jun; 84(6):1116-27. PubMed ID: 25836354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NerveTracker: a Python-based software toolkit for visualizing and tracking groups of nerve fibers in serial block-face microscopy with ultraviolet surface excitation images.
    Kolluru C; Joseph N; Seckler J; Fereidouni F; Levenson R; Shoffstall A; Jenkins M; Wilson D
    J Biomed Opt; 2024 Jul; 29(7):076501. PubMed ID: 38912214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional reconstruction and visualization of the median nerve from serial tissue sections.
    Sun K; Zhang J; Chen T; Chen Z; Chen Z; Li Z; Li H; Hu P
    Microsurgery; 2009; 29(7):573-7. PubMed ID: 19308949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CryoNuSeg: A dataset for nuclei instance segmentation of cryosectioned H&E-stained histological images.
    Mahbod A; Schaefer G; Bancher B; Löw C; Dorffner G; Ecker R; Ellinger I
    Comput Biol Med; 2021 May; 132():104349. PubMed ID: 33774269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph.
    Zheng G
    Med Phys; 2010 Apr; 37(4):1424-39. PubMed ID: 20443464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep-learning segmentation of fascicles from microCT of the human vagus nerve.
    Buyukcelik ON; Lapierre-Landry M; Kolluru C; Upadhye AR; Marshall DP; Pelot NA; Ludwig KA; Gustafson KJ; Wilson DL; Jenkins MW; Shoffstall AJ
    Front Neurosci; 2023; 17():1169187. PubMed ID: 37332862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic CT image segmentation of maxillary sinus based on VGG network and improved V-Net.
    Xu J; Wang S; Zhou Z; Liu J; Jiang X; Chen X
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1457-1465. PubMed ID: 32676871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully automatic and robust 3D registration of serial-section microscopic images.
    Wang CW; Budiman Gosno E; Li YS
    Sci Rep; 2015 Oct; 5():15051. PubMed ID: 26449756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3D global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy.
    Zhou J; Kim S; Jabbour S; Goyal S; Haffty B; Chen T; Levinson L; Metaxas D; Yue NJ
    Med Phys; 2010 Mar; 37(3):1298-308. PubMed ID: 20384267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic hippocampus segmentation of 7.0 Tesla MR images by combining multiple atlases and auto-context models.
    Kim M; Wu G; Li W; Wang L; Son YD; Cho ZH; Shen D
    Neuroimage; 2013 Dec; 83():335-45. PubMed ID: 23769921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.