These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32407397)

  • 21. Snake-like surgical forceps for robot-assisted minimally invasive surgery.
    Jin X; Zhao J; Feng M; Hao L; Li Q
    Int J Med Robot; 2018 Aug; 14(4):e1908. PubMed ID: 29570936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D printing of surgical instruments for long-duration space missions.
    Wong JY; Pfahnl AC
    Aviat Space Environ Med; 2014 Jul; 85(7):758-63. PubMed ID: 25022166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D Printer Application for Endoscope-Assisted Spine Surgery Instrument Development: From Prototype Instruments to Patient-Specific 3D Models.
    Yang HS; Park JY
    Yonsei Med J; 2020 Jan; 61(1):94-99. PubMed ID: 31887805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wire-driven flexible manipulator with constrained spherical joints for minimally invasive surgery.
    Ji D; Kang TH; Shim S; Lee S; Hong J
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1365-1377. PubMed ID: 30997634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printed Surgical Instruments Evaluated by a Simulated Crew of a Mars Mission.
    Wong JY; Pfahnl AC
    Aerosp Med Hum Perform; 2016 Sep; 87(9):806-10. PubMed ID: 27634701
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design, characterization and optimization of a soft fluidic actuator for minimally invasive surgery.
    Decroly G; Mertens B; Lambert P; Delchambre A
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):333-340. PubMed ID: 31646436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new modular mechanism that allows full detachability and cleaning of steerable laparoscopic instruments.
    Hardon SF; Schilder F; Bonjer J; Dankelman J; Horeman T
    Surg Endosc; 2019 Oct; 33(10):3484-3493. PubMed ID: 31144119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinical efficacy and effectiveness of 3D printing: a systematic review.
    Diment LE; Thompson MS; Bergmann JHM
    BMJ Open; 2017 Dec; 7(12):e016891. PubMed ID: 29273650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Minimal invasive ear, nose and throat surgery--advances through modern technologies.
    Plinkert PK; Baumann I
    Otolaryngol Pol; 1997; 51(3):255-85. PubMed ID: 9398924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patient-specific 3-dimensional Printed Kidney Designed for "4D" Surgical Navigation: A Novel Aid to Facilitate Minimally Invasive Off-clamp Partial Nephrectomy in Complex Tumor Cases.
    Komai Y; Sugimoto M; Gotohda N; Matsubara N; Kobayashi T; Sakai Y; Shiga Y; Saito N
    Urology; 2016 May; 91():226-33. PubMed ID: 26919965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The MemoFlex II, a non-robotic approach to follow-the-leader motion of a snake-like instrument for surgery using four predetermined physical tracks.
    Henselmans PWJ; Culmone C; Jager DJ; van Starkenburg RIB; Breedveld P
    Med Eng Phys; 2020 Dec; 86():86-95. PubMed ID: 33261739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Memo Slide: An explorative study into a novel mechanical follow-the-leader mechanism.
    Henselmans PW; Gottenbos S; Smit G; Breedveld P
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1213-1223. PubMed ID: 29125034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of 3D Printing Technology for Design and Manufacturing of Customized Components for a Mechanical Stretching Bioreactor.
    Putame G; Terzini M; Carbonaro D; Pisani G; Serino G; Di Meglio F; Castaldo C; Massai D
    J Healthc Eng; 2019; 2019():3957931. PubMed ID: 31178986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using 3D Printing to Create Personalized Brain Models for Neurosurgical Training and Preoperative Planning.
    Ploch CC; Mansi CSSA; Jayamohan J; Kuhl E
    World Neurosurg; 2016 Jun; 90():668-674. PubMed ID: 26924117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D Printed Micro Free-Flow Electrophoresis Device.
    Anciaux SK; Geiger M; Bowser MT
    Anal Chem; 2016 Aug; 88(15):7675-82. PubMed ID: 27377354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methodology and feasibility of a 3D printed assistive technology intervention.
    Schwartz JK; Fermin A; Fine K; Iglesias N; Pivarnik D; Struck S; Varela N; Janes WE
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):141-147. PubMed ID: 30663439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catheter steering in interventional cardiology: Mechanical analysis and novel solution.
    Ali A; Sakes A; Arkenbout EA; Henselmans P; van Starkenburg R; Szili-Torok T; Breedveld P
    Proc Inst Mech Eng H; 2019 Dec; 233(12):1207-1218. PubMed ID: 31580205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Method for minimising rolling joint play in the steerable laparoscopic instrument prototype DragonFlex.
    Jelínek F; Diepens T; Dobbenga S; van der Jagt G; Kreeft D; Smid A; Pessers R; Breedveld P
    Minim Invasive Ther Allied Technol; 2015 Jun; 24(3):181-8. PubMed ID: 25407751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Minimally invasive ENT surgery. Progress due to modern technology].
    Plinkert PK; Schurr MO; Kunert W; Flemming E; Buess G; Zenner HP
    HNO; 1996 Jun; 44(6):288-301. PubMed ID: 8767124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control devices and steering strategies in pathway surgery.
    Fan C; Jelínek F; Dodou D; Breedveld P
    J Surg Res; 2015 Feb; 193(2):543-53. PubMed ID: 25438958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.