These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32407478)

  • 21. Integration of microalgal cultivation system for wastewater remediation and sustainable biomass production.
    Gupta PL; Lee SM; Choi HJ
    World J Microbiol Biotechnol; 2016 Aug; 32(8):139. PubMed ID: 27357407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of Microalgal Stress Responses in Industrial Microalgal Production Systems.
    Wang J; Wang Y; Wu Y; Fan Y; Zhu C; Fu X; Chu Y; Chen F; Sun H; Mou H
    Mar Drugs; 2021 Dec; 20(1):. PubMed ID: 35049885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water use and its recycling in microalgae cultivation for biofuel application.
    Farooq W; Suh WI; Park MS; Yang JW
    Bioresour Technol; 2015 May; 184():73-81. PubMed ID: 25465788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Models of microalgal cultivation for added-value products - A review.
    Bekirogullari M; Figueroa-Torres GM; Pittman JK; Theodoropoulos C
    Biotechnol Adv; 2020 Nov; 44():107609. PubMed ID: 32781245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Waste biorefineries - integrating anaerobic digestion and microalgae cultivation for bioenergy production.
    Chen YD; Ho SH; Nagarajan D; Ren NQ; Chang JS
    Curr Opin Biotechnol; 2018 Apr; 50():101-110. PubMed ID: 29227859
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy.
    Viegas C; Gouveia L; Gonçalves M
    J Environ Manage; 2021 May; 286():112187. PubMed ID: 33609932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perspectives on the feasibility of using microalgae for industrial wastewater treatment.
    Wang Y; Ho SH; Cheng CL; Guo WQ; Nagarajan D; Ren NQ; Lee DJ; Chang JS
    Bioresour Technol; 2016 Dec; 222():485-497. PubMed ID: 27765375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyanobacteria and microalgae: a positive prospect for biofuels.
    Parmar A; Singh NK; Pandey A; Gnansounou E; Madamwar D
    Bioresour Technol; 2011 Nov; 102(22):10163-72. PubMed ID: 21924898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Treatment of industrial wastewaters by microalgal bacterial flocs in sequencing batch reactors.
    Van Den Hende S; Carré E; Cocaud E; Beelen V; Boon N; Vervaeren H
    Bioresour Technol; 2014 Jun; 161():245-54. PubMed ID: 24709538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An overview on microalgae as renewable resources for meeting sustainable development goals.
    Oliveira CYB; Jacob A; Nader C; Oliveira CDL; Matos ÂP; Araújo ES; Shabnam N; Ashok B; Gálvez AO
    J Environ Manage; 2022 Oct; 320():115897. PubMed ID: 35947909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous microalgal biomass production and CO
    Kuo CM; Jian JF; Lin TH; Chang YB; Wan XH; Lai JT; Chang JS; Lin CS
    Bioresour Technol; 2016 Dec; 221():241-250. PubMed ID: 27643732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Holistic Approach to Managing Microalgae for Biofuel Applications.
    Show PL; Tang MS; Nagarajan D; Ling TC; Ooi CW; Chang JS
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microalgae: a robust "green bio-bridge" between energy and environment.
    Chen Y; Xu C; Vaidyanathan S
    Crit Rev Biotechnol; 2018 May; 38(3):351-368. PubMed ID: 28764567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels.
    Markou G; Angelidaki I; Georgakakis D
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):631-45. PubMed ID: 22996277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transition from synthetic to alternative media for microalgae cultivation: A critical review.
    Chakraborty B; Gayen K; Bhowmick TK
    Sci Total Environ; 2023 Nov; 897():165412. PubMed ID: 37429469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Legal regulations and consumer attitudes regarding the use of products obtained from aquaculture.
    Gómez B; Pateiro M; Barba FJ; Marszałek K; Puchalski C; Lewandowski W; Simal-Gandara J; Lorenzo JM
    Adv Food Nutr Res; 2020; 92():225-245. PubMed ID: 32402445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergy of biofuel production with waste remediation along with value-added co-products recovery through microalgae cultivation: A review of membrane-integrated green approach.
    Kumar R; Ghosh AK; Pal P
    Sci Total Environ; 2020 Jan; 698():134169. PubMed ID: 31505365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Valuable Polyunsaturated Fatty Acids from Microalgae: Strategies to Improve Their Yields and Their Potential Exploitation in Aquaculture.
    Santin A; Russo MT; Ferrante MI; Balzano S; Orefice I; Sardo A
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives.
    Venkata Mohan S; Rohit MV; Chiranjeevi P; Chandra R; Navaneeth B
    Bioresour Technol; 2015 May; 184():169-178. PubMed ID: 25497058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO
    Lu W; Asraful Alam M; Liu S; Xu J; Parra Saldivar R
    Sci Total Environ; 2020 May; 716():135247. PubMed ID: 31839294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.