These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 32407998)
1. A barcode-DNA analysis method for the identification of plant oil adulteration in milk and dairy products. Uncu AO; Uncu AT Food Chem; 2020 Oct; 326():126986. PubMed ID: 32407998 [TBL] [Abstract][Full Text] [Related]
2. Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil. Uncu AT; Uncu AO; Frary A; Doganlar S Food Chem; 2017 Apr; 221():1026-1033. PubMed ID: 27979055 [TBL] [Abstract][Full Text] [Related]
3. Authentication of Botanical Origin in Herbal Teas by Plastid Noncoding DNA Length Polymorphisms. Uncu AT; Uncu AO; Frary A; Doganlar S J Agric Food Chem; 2015 Jul; 63(25):5920-9. PubMed ID: 26054647 [TBL] [Abstract][Full Text] [Related]
4. Exploitation of the chloroplast trnL (UAA) intron polymorphisms for the authentication of plant oils by means of a lab-on-a-chip capillary electrophoresis system. Spaniolas S; Bazakos C; Awad M; Kalaitzis P J Agric Food Chem; 2008 Aug; 56(16):6886-91. PubMed ID: 18646759 [TBL] [Abstract][Full Text] [Related]
5. The trnL (UAA)-trnF (GAA) intergenic spacer is a robust marker of green pea (Pisum sativum L.) adulteration in economically valuable pistachio nuts (Pistacia vera L.). Sen F; Uncu AO; Uncu AT; Erdeger SN J Sci Food Agric; 2020 May; 100(7):3056-3061. PubMed ID: 32077485 [TBL] [Abstract][Full Text] [Related]
6. Identification of processed Chinese medicinal materials using DNA mini-barcoding. Song M; Dong GQ; Zhang YQ; Liu X; Sun W Chin J Nat Med; 2017 Jul; 15(7):481-486. PubMed ID: 28807221 [TBL] [Abstract][Full Text] [Related]
7. Raman spectroscopy coupled with chemometric methods for the discrimination of foreign fats and oils in cream and yogurt. Karacaglar NNY; Bulat T; Boyaci IH; Topcu A J Food Drug Anal; 2019 Jan; 27(1):101-110. PubMed ID: 30648563 [TBL] [Abstract][Full Text] [Related]
8. Barcode DNA high-resolution melting (Bar-HRM) analysis as a novel close-tubed and accurate tool for olive oil forensic use. Ganopoulos I; Bazakos C; Madesis P; Kalaitzis P; Tsaftaris A J Sci Food Agric; 2013 Jul; 93(9):2281-6. PubMed ID: 23400707 [TBL] [Abstract][Full Text] [Related]
9. Plant DNA barcoding: from gene to genome. Li X; Yang Y; Henry RJ; Rossetto M; Wang Y; Chen S Biol Rev Camb Philos Soc; 2015 Feb; 90(1):157-66. PubMed ID: 24666563 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous identification of bovine and equine DNA in milks and dairy products inferred from triplex TaqMan real-time PCR technique. Guo L; Qian JP; Guo YS; Hai X; Liu GQ; Luo JX; Ya M J Dairy Sci; 2018 Aug; 101(8):6776-6786. PubMed ID: 29885894 [TBL] [Abstract][Full Text] [Related]
11. Dispersive liquid-liquid microextraction combined with field-amplified sample stacking in capillary electrophoresis for the determination of non-steroidal anti-inflammatory drugs in milk and dairy products. Alshana U; Göğer NG; Ertaş N Food Chem; 2013 Jun; 138(2-3):890-7. PubMed ID: 23411193 [TBL] [Abstract][Full Text] [Related]
12. Sensitive PCR analysis of animal tissue samples for fragments of endogenous and transgenic plant DNA. Nemeth A; Wurz A; Artim L; Charlton S; Dana G; Glenn K; Hunst P; Jennings J; Shilito R; Song P J Agric Food Chem; 2004 Oct; 52(20):6129-35. PubMed ID: 15453677 [TBL] [Abstract][Full Text] [Related]
14. Molecular delimitation of European leafy liverworts of the genus Calypogeia based on plastid super-barcodes. Ślipiko M; Myszczyński K; Buczkowska K; Bączkiewicz A; Szczecińska M; Sawicki J BMC Plant Biol; 2020 May; 20(1):243. PubMed ID: 32466772 [TBL] [Abstract][Full Text] [Related]
15. [Detection of the genetically modified organisms in genetically modified soybean and maize by polymerase chain reaction method]. Mao D; Mu W; Yang X Wei Sheng Yan Jiu; 2002 Jun; 31(3):184-7. PubMed ID: 12545757 [TBL] [Abstract][Full Text] [Related]
16. DNA barcoding coupled with high-resolution melting analysis for nut species and walnut milk beverage authentication. Ding Y; Jiang G; Huang L; Chen C; Sun J; Zhu C J Sci Food Agric; 2020 Apr; 100(6):2372-2379. PubMed ID: 31901140 [TBL] [Abstract][Full Text] [Related]
17. RAPD/SCAR Approaches for Identification of Adulterant Breeds' Milk in Dairy Products. Cunha JT; Domingues L Methods Mol Biol; 2017; 1620():183-193. PubMed ID: 28540709 [TBL] [Abstract][Full Text] [Related]
18. Detection of transgenic and endogenous plant DNA in rumen fluid, duodenal digesta, milk, blood, and feces of lactating dairy cows. Phipps RH; Deaville ER; Maddison BC J Dairy Sci; 2003 Dec; 86(12):4070-8. PubMed ID: 14740846 [TBL] [Abstract][Full Text] [Related]
19. Microsatellite High-Resolution Melting (SSR-HRM) to Track Olive Genotypes: From Field to Olive Oil. Gomes S; Breia R; Carvalho T; Carnide V; Martins-Lopes P J Food Sci; 2018 Oct; 83(10):2415-2423. PubMed ID: 30350554 [TBL] [Abstract][Full Text] [Related]
20. New capillary electrophoresis method for the determination of furosine in dairy products. Vallejo-Cordoba B; Mazorra-Manzano MA; González-Córdova AF J Agric Food Chem; 2004 Sep; 52(19):5787-90. PubMed ID: 15366821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]