These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32408045)

  • 1. Production of plant-derived anticancer precursor glucoraphanin in chromosomally engineered Escherichia coli.
    Yang H; Qin J; Wang X; Ei-Shora HM; Yu B
    Microbiol Res; 2020 Sep; 238():126484. PubMed ID: 32408045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing Biosynthetic Pathway of the Plant-Derived Cancer Chemopreventive-Precursor Glucoraphanin in Escherichia coli.
    Yang H; Liu F; Li Y; Yu B
    ACS Synth Biol; 2018 Jan; 7(1):121-131. PubMed ID: 29149798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli.
    Mirza N; Crocoll C; Erik Olsen C; Ann Halkier B
    Metab Eng; 2016 May; 35():31-37. PubMed ID: 26410451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of the cancer-preventive glucoraphanin in tobacco.
    Mikkelsen MD; Olsen CE; Halkier BA
    Mol Plant; 2010 Jul; 3(4):751-9. PubMed ID: 20457641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering.
    Qian H; Sun B; Miao H; Cai C; Xu C; Wang Q
    Food Chem; 2015 Feb; 168():321-6. PubMed ID: 25172716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family.
    Augustine R; Bisht NC
    Sci Rep; 2015 Dec; 5():18005. PubMed ID: 26657321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of Heterologous Glucoraphanin Production
    Barnum CR; Endelman BJ; Ornelas IJ; Pignolet RM; Shih PM
    ACS Synth Biol; 2022 May; 11(5):1865-1873. PubMed ID: 35438493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo production of benzyl glucosinolate in Escherichia coli.
    Petersen A; Crocoll C; Halkier BA
    Metab Eng; 2019 Jul; 54():24-34. PubMed ID: 30831267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic regulation of glucoraphanin accumulation in Beneforté broccoli.
    Traka MH; Saha S; Huseby S; Kopriva S; Walley PG; Barker GC; Moore J; Mero G; van den Bosch F; Constant H; Kelly L; Schepers H; Boddupalli S; Mithen RF
    New Phytol; 2013 Jun; 198(4):1085-1095. PubMed ID: 23560984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Engineered Production of the Glucoraphanin Precursor Dihomomethionine in Nicotiana benthamiana.
    Crocoll C; Mirza N; Reichelt M; Gershenzon J; Halkier BA
    Front Bioeng Biotechnol; 2016; 4():14. PubMed ID: 26909347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content.
    Robin AH; Yi GE; Laila R; Yang K; Park JI; Kim HR; Nou IS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27322230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey).
    Yin L; Chen C; Chen G; Cao B; Lei J
    Molecules; 2015 Nov; 20(11):20254-67. PubMed ID: 26569208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematically chromosomally engineered Escherichia coli efficiently produces butanol.
    Dong H; Zhao C; Zhang T; Zhu H; Lin Z; Tao W; Zhang Y; Li Y
    Metab Eng; 2017 Nov; 44():284-292. PubMed ID: 29102594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redesign and reconstruction of a steviol-biosynthetic pathway for enhanced production of steviol in Escherichia coli.
    Moon JH; Lee K; Lee JH; Lee PC
    Microb Cell Fact; 2020 Feb; 19(1):20. PubMed ID: 32013995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The isolation and purification of glucoraphanin from broccoli seeds by solid phase extraction and preparative high performance liquid chromatography.
    Rochfort S; Caridi D; Stinton M; Trenerry VC; Jones R
    J Chromatogr A; 2006 Jul; 1120(1-2):205-10. PubMed ID: 16457830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production.
    Liu CL; Bi HR; Bai Z; Fan LH; Tan TW
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):239-250. PubMed ID: 30374674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Construction and optimization of microbial cell factories for producing cis, cis-muconic acid].
    Song G; Jiang X; Chen W; Peng Y; Lu F; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2016 Sep; 32(9):1212-1223. PubMed ID: 29022322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a novel anaerobic pathway in Escherichia coli for propionate production.
    Li J; Zhu X; Chen J; Zhao D; Zhang X; Bi C
    BMC Biotechnol; 2017 Apr; 17(1):38. PubMed ID: 28407739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.