These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32408099)

  • 21. Multi-scale CFD simulation of hydrodynamics and cracking reactions in fixed fluidized bed reactors.
    Zhang JH; Wang ZB; Zhao H; Tian YY; Shan HH; Yang CH
    Appl Petrochem Res; 2015; 5(4):255-261. PubMed ID: 27656344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Valorization of Spent coffee Grounds: A sustainable resource for Bio-based phase change materials for thermal energy storage.
    Jin Ong P; Leow Y; Yun Debbie Soo X; Hui Chua M; Ni X; Suwardi A; Kiang Ivan Tan C; Zheng R; Wei F; Xu J; Jun Loh X; Kai D; Zhu Q
    Waste Manag; 2023 Feb; 157():339-347. PubMed ID: 36603448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of Cold Atmospheric Plasma Pretreatment on the Recovery of Phenolic Antioxidants from Spent Coffee Grounds.
    Kyriakoudi A; Loukri A; Christaki S; Oliinychenko Y; Stratakos AC; Mourtzinos I
    Food Anal Methods; 2024; 17(10):1484-1496. PubMed ID: 39345863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Utilization of Spent Coffee Grounds for Bioelectricity Generation in Sediment Microbial Fuel Cells.
    Mohd Noor NN; Jeong I; Yoon S; Kim K
    Microorganisms; 2024 Mar; 12(3):. PubMed ID: 38543669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spent Coffee Grounds as an Adsorbent for Malathion and Chlorpyrifos-Kinetics, Thermodynamics, and Eco-Neurotoxicity.
    Milanković V; Tasić T; Pejčić M; Pašti I; Lazarević-Pašti T
    Foods; 2023 Jun; 12(12):. PubMed ID: 37372608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical pretreatment of biogenic-rich trommel fines for fast pyrolysis.
    Eke J; Onwudili JA; Bridgwater AV
    Waste Manag; 2017 Dec; 70():81-90. PubMed ID: 28927872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unlocking the potential of spent coffee grounds via a comprehensive biorefinery approach: production of microbial oil and carotenoids under fed-batch fermentation.
    Anagnostopoulou E; Tsouko E; Maina S; Myrtsi ED; Haroutounian S; Papanikolaou S; Koutinas A
    Environ Sci Pollut Res Int; 2024 May; 31(24):35483-35497. PubMed ID: 38727974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pore volume upgrade of biochar from spent coffee grounds by sodium bicarbonate during torrefaction.
    Chen WH; Du JT; Lee KT; Ong HC; Park YK; Huang CC
    Chemosphere; 2021 Jul; 275():129999. PubMed ID: 33639554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioaccesibility, Metabolism, and Excretion of Lipids Composing Spent Coffee Grounds.
    Iriondo-DeHond A; Cornejo FS; Fernandez-Gomez B; Vera G; Guisantes-Batan E; Alonso SG; Andres MIS; Sanchez-Fortun S; Lopez-Gomez L; Uranga JA; Abalo R; Del Castillo MD
    Nutrients; 2019 Jun; 11(6):. PubMed ID: 31234581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of industrial and domestic ash from biomass combustion, and spent coffee grounds, on soil fertility and plant growth: experiments at field conditions.
    Ribeiro JP; Vicente ED; Gomes AP; Nunes MI; Alves C; Tarelho LAC
    Environ Sci Pollut Res Int; 2017 Jun; 24(18):15270-15277. PubMed ID: 28500551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-Stage Bio-Hydrogen and Polyhydroxyalkanoate Production: Upcycling of Spent Coffee Grounds.
    Kang BJ; Jeon JM; Bhatia SK; Kim DH; Yang YH; Jung S; Yoon JJ
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic Potential of Filamentous Fungi as a Biological Pretreatment for Acidogenic Fermentation of Coffee Waste.
    Pereira J; Cachinho A; de Melo MMR; Silva CM; Lemos PC; Xavier AMRB; Serafim LS
    Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. UV-crosslinking of chitosan/spent coffee ground composites for enhanced durability and multifunctionality.
    Zheng NC; Chien HW
    Int J Biol Macromol; 2024 Jan; 255():128215. PubMed ID: 37992943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zn Biofortification of Dutch Cucumbers with Chemically Modified Spent Coffee Grounds: Zn Enrichment and Nutritional Implications.
    Navajas-Porras B; Cervera-Mata A; Fernández-Arteaga A; Delgado-Osorio A; Navarro-Moreno M; Hinojosa-Nogueira D; Pastoriza S; Delgado G; Navarro-Alarcón M; Rufián-Henares JÁ
    Foods; 2024 Apr; 13(8):. PubMed ID: 38672819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor.
    Cao Y; Zhou H; Fan J; Zhao H; Zhou T; Hack P; Chan CC; Liou JC; Pan WP
    Environ Sci Technol; 2008 Dec; 42(24):9378-84. PubMed ID: 19174919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Superficial Gas Velocity on the Solid Temperature Distribution in Gas Fluidized Beds with Heat Production.
    Banaei M; Jegers J; van Sint Annaland M; Kuipers JAM; Deen NG
    Ind Eng Chem Res; 2017 Aug; 56(30):8729-8737. PubMed ID: 29187774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential Uses of Spent Coffee Grounds in the Food Industry.
    Franca AS; Oliveira LS
    Foods; 2022 Jul; 11(14):. PubMed ID: 35885305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-pot selective production of levulinic acid and formic acid from spent coffee grounds in a catalyst-free biphasic system.
    Kim B; Yang J; Kim M; Lee JW
    Bioresour Technol; 2020 May; 303():122898. PubMed ID: 32032939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spent coffee grounds as a versatile source of green energy.
    Kondamudi N; Mohapatra SK; Misra M
    J Agric Food Chem; 2008 Dec; 56(24):11757-60. PubMed ID: 19053356
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CFD Simulation and Optimization of Mixing Behaviors in a Spouted Bed with a Longitudinal Vortex.
    Wu F; Bai J; Zhang J; Zhou W; Ma X
    ACS Omega; 2019 May; 4(5):8214-8221. PubMed ID: 31459910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.