These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 32408196)

  • 1. Penicillium subrubescens adapts its enzyme production to the composition of plant biomass.
    Dilokpimol A; Peng M; Di Falco M; Chin A Woeng T; Hegi RMW; Granchi Z; Tsang A; Hildén KS; Mäkelä MR; de Vries RP
    Bioresour Technol; 2020 Sep; 311():123477. PubMed ID: 32408196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penicillium subrubescens is a promising alternative for Aspergillus niger in enzymatic plant biomass saccharification.
    Mäkelä MR; Mansouri S; Wiebenga A; Rytioja J; de Vries RP; Hildén KS
    N Biotechnol; 2016 Dec; 33(6):834-841. PubMed ID: 27469436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The draft genome sequence of the ascomycete fungus Penicillium subrubescens reveals a highly enriched content of plant biomass related CAZymes compared to related fungi.
    Peng M; Dilokpimol A; Mäkelä MR; Hildén K; Bervoets S; Riley R; Grigoriev IV; Hainaut M; Henrissat B; de Vries RP; Granchi Z
    J Biotechnol; 2017 Mar; 246():1-3. PubMed ID: 28216099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus Penicillium subrubescens as a new industrial enzyme producer.
    Salazar-Cerezo S; Kun RS; de Vries RP; Garrigues S
    Enzyme Microb Technol; 2020 Feb; 133():109463. PubMed ID: 31874686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic and exoproteomic diversity in plant biomass degradation approaches among Aspergilli.
    Mäkelä MR; DiFalco M; McDonnell E; Nguyen TTM; Wiebenga A; Hildén K; Peng M; Grigoriev IV; Tsang A; de Vries RP
    Stud Mycol; 2018 Sep; 91():79-99. PubMed ID: 30487660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative characterization of nine novel GH51, GH54 and GH62 α-l-arabinofuranosidases from Penicillium subrubescens.
    Coconi Linares N; Li X; Dilokpimol A; de Vries RP
    FEBS Lett; 2022 Feb; 596(3):360-368. PubMed ID: 35014696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Closely related fungi employ diverse enzymatic strategies to degrade plant biomass.
    Benoit I; Culleton H; Zhou M; DiFalco M; Aguilar-Osorio G; Battaglia E; Bouzid O; Brouwer CPJM; El-Bushari HBO; Coutinho PM; Gruben BS; Hildén KS; Houbraken J; Barboza LAJ; Levasseur A; Majoor E; Mäkelä MR; Narang HM; Trejo-Aguilar B; van den Brink J; vanKuyk PA; Wiebenga A; McKie V; McCleary B; Tsang A; Henrissat B; de Vries RP
    Biotechnol Biofuels; 2015; 8():107. PubMed ID: 26236396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sexual crossing of thermophilic fungus Myceliophthora heterothallica improved enzymatic degradation of sugar beet pulp.
    Aguilar-Pontes MV; Zhou M; van der Horst S; Theelen B; de Vries RP; van den Brink J
    Biotechnol Biofuels; 2016; 9():41. PubMed ID: 26900400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinant production and characterization of six novel GH27 and GH36 α-galactosidases from Penicillium subrubescens and their synergism with a commercial mannanase during the hydrolysis of lignocellulosic biomass.
    Coconi Linares N; Dilokpimol A; Stålbrand H; Mäkelä MR; de Vries RP
    Bioresour Technol; 2020 Jan; 295():122258. PubMed ID: 31639625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GH10 and GH11 endoxylanases in Penicillium subrubescens: Comparative characterization and synergy with GH51, GH54, GH62 α-L-arabinofuranosidases from the same fungus.
    Li X; Kouzounis D; Kabel MA; de Vries RP
    N Biotechnol; 2022 Sep; 70():84-92. PubMed ID: 35597447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis of Aspergillus niger xlnR and xkiA mutants grown on corn Stover and soybean hulls reveals a highly complex regulatory network.
    Khosravi C; Kowalczyk JE; Chroumpi T; Battaglia E; Aguilar Pontes MV; Peng M; Wiebenga A; Ng V; Lipzen A; He G; Bauer D; Grigoriev IV; de Vries RP
    BMC Genomics; 2019 Nov; 20(1):853. PubMed ID: 31726994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila.
    Kolbusz MA; Di Falco M; Ishmael N; Marqueteau S; Moisan MC; Baptista CDS; Powlowski J; Tsang A
    Fungal Genet Biol; 2014 Nov; 72():10-20. PubMed ID: 24881579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-routing of Sugar Catabolism Provides a Better Insight Into Fungal Flexibility in Using Plant Biomass-Derived Monomers as Substrates.
    Chroumpi T; Peng M; Markillie LM; Mitchell HD; Nicora CD; Hutchinson CM; Paurus V; Tolic N; Clendinen CS; Orr G; Baker SE; Mäkelä MR; de Vries RP
    Front Bioeng Biotechnol; 2021; 9():644216. PubMed ID: 33763411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating Transcriptional Regulation of Plant Biomass Degrading Enzyme Networks for Rational Design of Industrial Fungal Strains.
    Alazi E; Ram AFJ
    Front Bioeng Biotechnol; 2018; 6():133. PubMed ID: 30320082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome Profiling-Based Analysis of Carbohydrate-Active Enzymes in
    Corrêa CL; Midorikawa GEO; Filho EXF; Noronha EF; Alves GSC; Togawa RC; Silva-Junior OB; Costa MMDC; Grynberg P; Miller RNG
    Front Bioeng Biotechnol; 2020; 8():564527. PubMed ID: 33123513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus
    Hüttner S; Nguyen TT; Granchi Z; Chin-A-Woeng T; Ahrén D; Larsbrink J; Thanh VN; Olsson L
    Biotechnol Biofuels; 2017; 10():265. PubMed ID: 29158777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAZyme prediction in ascomycetous yeast genomes guides discovery of novel xylanolytic species with diverse capacities for hemicellulose hydrolysis.
    Ravn JL; Engqvist MKM; Larsbrink J; Geijer C
    Biotechnol Biofuels; 2021 Jul; 14(1):150. PubMed ID: 34215291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription Factor NsdD Regulates the Expression of Genes Involved in Plant Biomass-Degrading Enzymes, Conidiation, and Pigment Biosynthesis in Penicillium oxalicum.
    He QP; Zhao S; Wang JX; Li CX; Yan YS; Wang L; Liao LS; Feng JX
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The synergistic actions of hydrolytic genes reveal the mechanism of Trichoderma harzianum for cellulose degradation.
    Almeida DA; Horta MAC; Ferreira Filho JA; Murad NF; de Souza AP
    J Biotechnol; 2021 Jun; 334():1-10. PubMed ID: 33992696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of cellulolytic enzyme production and performance by rational designing expression regulatory network and enzyme system composition.
    Li Z; Liu G; Qu Y
    Bioresour Technol; 2017 Dec; 245(Pt B):1718-1726. PubMed ID: 28684177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.