These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 32408272)
1. Changes of EEG phase synchronization and EOG signals along the use of steady state visually evoked potential-based brain computer interface. Peng Y; Wang Z; Wong CM; Nan W; Rosa A; Xu P; Wan F; Hu Y J Neural Eng; 2020 Jul; 17(4):045006. PubMed ID: 32408272 [TBL] [Abstract][Full Text] [Related]
2. A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals. Zhou Y; He S; Huang Q; Li Y IEEE Trans Biomed Eng; 2020 Oct; 67(10):2881-2892. PubMed ID: 32070938 [TBL] [Abstract][Full Text] [Related]
3. Vigilance Estimating in SSVEP-Based BCI Using Multimodal Signals. Wang K; Qiu S; Wei W; Zhang C; He H; Xu M; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5974-5978. PubMed ID: 34892479 [TBL] [Abstract][Full Text] [Related]
4. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials. Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674 [TBL] [Abstract][Full Text] [Related]
5. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals. Brunner C; Allison BZ; Altstätter C; Neuper C J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538 [TBL] [Abstract][Full Text] [Related]
6. SSVEP-assisted RSVP brain-computer interface paradigm for multi-target classification. Ko LW; Sandeep Vara Sankar D; Huang Y; Lu YC; Shaw S; Jung TP J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33291083 [TBL] [Abstract][Full Text] [Related]
7. Use of Force Feedback Device in a Hybrid Brain-Computer Interface Based on SSVEP, EOG and Eye Tracking for Sorting Items. Kubacki A Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770554 [TBL] [Abstract][Full Text] [Related]
8. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies. Hwang HJ; Han CH; Lim JH; Kim YW; Choi SI; An KO; Lee JH; Cha HS; Hyun Kim S; Im CH Psychophysiology; 2017 Mar; 54(3):444-451. PubMed ID: 27914171 [TBL] [Abstract][Full Text] [Related]
9. A Bipolar-Channel Hybrid Brain-Computer Interface System for Home Automation Control Utilizing Steady-State Visually Evoked Potential and Eye-Blink Signals. Yang D; Nguyen TH; Chung WY Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987871 [TBL] [Abstract][Full Text] [Related]
10. Exploration of User's Mental State Changes during Performing Brain-Computer Interface. Ko LW; Chikara RK; Lee YC; Lin WC Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503162 [TBL] [Abstract][Full Text] [Related]
11. Alpha neurofeedback training improves SSVEP-based BCI performance. Wan F; da Cruz JN; Nan W; Wong CM; Vai MI; Rosa A J Neural Eng; 2016 Jun; 13(3):036019. PubMed ID: 27152666 [TBL] [Abstract][Full Text] [Related]
12. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses. Baek HJ; Kim HS; Heo J; Lim YG; Park KS J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913 [TBL] [Abstract][Full Text] [Related]
13. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces. Zhu F; Jiang L; Dong G; Gao X; Wang Y Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754 [TBL] [Abstract][Full Text] [Related]
14. Optimizing a left and right visual field biphasic stimulation paradigm for SSVEP-based BCIs with hairless region behind the ear. Liang L; Bin G; Chen X; Wang Y; Gao S; Gao X J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34875637 [No Abstract] [Full Text] [Related]
15. A study on dynamic model of steady-state visual evoked potentials. Zhang S; Han X; Chen X; Wang Y; Gao S; Gao X J Neural Eng; 2018 Aug; 15(4):046010. PubMed ID: 29616978 [TBL] [Abstract][Full Text] [Related]
16. A Calibration-Free Hybrid Approach Combining SSVEP and EOG for Continuous Control. Mai X; Sheng X; Shu X; Ding Y; Zhu X; Meng J IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3480-3491. PubMed ID: 37610901 [TBL] [Abstract][Full Text] [Related]
17. Stress-Induced Effects in Resting EEG Spectra Predict the Performance of SSVEP-Based BCI. Zhang HY; Stevenson CE; Jung TP; Ko LW IEEE Trans Neural Syst Rehabil Eng; 2020 Aug; 28(8):1771-1780. PubMed ID: 32746309 [TBL] [Abstract][Full Text] [Related]
18. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas. Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871 [TBL] [Abstract][Full Text] [Related]
19. An SSVEP-BCI in Augmented Reality. Liu P; Ke Y; Du J; Liu W; Kong L; Wang N; An X; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5548-5551. PubMed ID: 31947111 [TBL] [Abstract][Full Text] [Related]