These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 32408526)

  • 41. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.
    Li S; Jiang S; Jiang S; Wu J; Xiong W; Diao S
    Comput Math Methods Med; 2017; 2017():9468503. PubMed ID: 29250135
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A measurement of illumination variation-resistant noncontact heart rate based on the combination of singular spectrum analysis and sub-band method.
    Ryu J; Hong S; Liang S; Pak S; Chen Q; Yan S
    Comput Methods Programs Biomed; 2021 Mar; 200():105824. PubMed ID: 33168271
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation.
    Wójcikowski M; Pankiewicz B
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Remote Photoplethysmography and Heart Rate Estimation by Dynamic Region of Interest Tracking.
    Wei W; Vatanparvar K; Zhu L; Kuang J; Gao A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3243-3248. PubMed ID: 36085962
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient noise-tolerant estimation of heart rate variability using single-channel photoplethysmography.
    Firoozabadi R; Helfenbein ED; Babaeizadeh S
    J Electrocardiol; 2017; 50(6):841-846. PubMed ID: 28918214
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-Time Evaluation of Time-Domain Pulse Rate Variability Parameters in Different Postures and Breathing Patterns Using Wireless Photoplethysmography Sensor: Towards Remote Healthcare in Low-Resource Communities.
    Pineda-Alpizar F; Arriola-Valverde S; Vado-Chacón M; Sossa-Rojas D; Liu H; Zheng D
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177450
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multimodal Assessment of the Pulse Rate Variability Analysis Module of a Photoplethysmography-Based Telemedicine System.
    Antali F; Kulin D; Lucz KI; Szabó B; Szűcs L; Kulin S; Miklós Z
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450986
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimal digital filter selection for remote photoplethysmography (rPPG) signal conditioning.
    Guler S; Golparvar A; Ozturk O; Dogan H; Kaya Yapici M
    Biomed Phys Eng Express; 2023 Jan; 9(2):. PubMed ID: 36596253
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Measuring pulse rate variability using long-range, non-contact imaging photoplethysmography.
    Blackford EB; Piasecki AM; Estepp JR
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3930-3936. PubMed ID: 28269145
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Initial evaluation of prospective cardiac triggering using photoplethysmography signals recorded with a video camera compared to pulse oximetry and electrocardiography at 7T MRI.
    Spicher N; Kukuk M; Maderwald S; Ladd ME
    Biomed Eng Online; 2016 Nov; 15(1):126. PubMed ID: 27881126
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel method for accurate estimation of HRV from smartwatch PPG signals.
    Bhowmik T; Dey J; Tiwari VN
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():109-112. PubMed ID: 29059822
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploiting spatial redundancy of image sensor for motion robust rPPG.
    Wang W; Stuijk S; de Haan G
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):415-25. PubMed ID: 25216474
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GRGB rPPG: An Efficient Low-Complexity Remote Photoplethysmography-Based Algorithm for Heart Rate Estimation.
    Haugg F; Elgendi M; Menon C
    Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829737
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Fast FPGA Hardware Accelerator for Remote Heart Rate Detection Based on RGB Vision.
    Hsu JY; Jiang TY; Chao PC
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):592-607. PubMed ID: 38227402
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heart rate estimation from facial photoplethysmography during dynamic illuminance changes.
    Dongseok Lee ; Jeehoon Kim ; Sungjun Kwon ; Kwangsuk Park
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2758-61. PubMed ID: 26736863
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Non-contact high precision pulse-rate monitoring system for moving subjects in different motion states.
    Zhang Q; Lin X; Zhang Y; Liu Q; Cai F
    Med Biol Eng Comput; 2023 Oct; 61(10):2769-2783. PubMed ID: 37474842
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Attacks on Heartbeat-Based Security Using Remote Photoplethysmography.
    Seepers RM; Wang W; de Haan G; Sourdis I; Strydis C
    IEEE J Biomed Health Inform; 2018 May; 22(3):714-721. PubMed ID: 28391214
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pulse rate variability analysis by video using face detection and tracking algorithms.
    Melchor Rodriguez A; Ramos Castro J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5696-9. PubMed ID: 26737585
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Respiratory rate detection algorithms by photoplethysmography signal processing.
    Lee EM; Kim NH; Trang NT; Hong JH; Cha EJ; Lee TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1140-3. PubMed ID: 19162865
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facial Video-Based Remote Physiological Measurement via Self-Supervised Learning.
    Yue Z; Shi M; Ding S
    IEEE Trans Pattern Anal Mach Intell; 2023 Nov; 45(11):13844-13859. PubMed ID: 37490386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.