These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 32408590)

  • 21. Shot peening increases resistance to cyclic fatigue fracture of endodontic files.
    Nino-Barrera J; Sanchez-Aleman J; Acosta-Humanez M; Gamboa-Martinez L; Cortes-Rodriguez C
    Sci Rep; 2021 Jun; 11(1):12961. PubMed ID: 34155287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Abrasive waterjet peening: a new method of surface preparation for metal orthopedic implants.
    Arola DD; McCain ML
    J Biomed Mater Res; 2000 Sep; 53(5):536-46. PubMed ID: 10984702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening.
    Gujba AK; Medraj M
    Materials (Basel); 2014 Dec; 7(12):7925-7974. PubMed ID: 28788284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of Geometric Surface Structure and Surface Layer Microhardness of Ti6Al4V Titanium Alloy after Vibratory Shot Peening.
    Matuszak J
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigations into the Improvement of the Mechanical Properties of Ti-5Al-4Mo-4Cr-2Sn-2Zr Titanium Alloy by Using Low Energy Laser Peening without Coating.
    Xue D; Jiao Y; He W; Shen X; Gao Y; Wang L
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32204483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting.
    Van Hooreweder B; Apers Y; Lietaert K; Kruth JP
    Acta Biomater; 2017 Jan; 47():193-202. PubMed ID: 27717912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Additive Manufacturing of Alloy 718 via Electron Beam Melting: Effect of Post-Treatment on the Microstructure and the Mechanical Properties.
    Balachandramurthi AR; Moverare J; Mahade S; Pederson R
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30585242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fatigue Limit of Custom 465 with Surface Strengthening Treatment.
    An G; Liu RJ; Yin GQ
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31935829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective Laser Melted Titanium Alloy for Transgingival Components: Influence of Surface Condition on Fibroblast Cell Behavior.
    Crenn MJ; Benoit A; Rohman G; Guilbert T; Fromentin O; Attal JP; Bardet C
    J Prosthodont; 2022 Jan; 31(1):50-58. PubMed ID: 33569866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting.
    Wang H; Zhao B; Liu C; Wang C; Tan X; Hu M
    PLoS One; 2016; 11(7):e0158513. PubMed ID: 27391895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the fatigue behavior of medical Ti6Al4V roughened by grit blasting and abrasiveless waterjet peening.
    Lieblich M; Barriuso S; Ibáñez J; Ruiz-de-Lara L; Díaz M; Ocaña JL; Alberdi A; González-Carrasco JL
    J Mech Behav Biomed Mater; 2016 Oct; 63():390-398. PubMed ID: 27454525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hot isostatic pressing as an alternative thermo-mechanical treatment for metallic full-arch implant-supported frameworks obtained by additive and subtractive manufacturing technology: Vertical and horizontal fit, screw removal torque, and stress analysis.
    Barbin T; Borges GA; Jardini AL; Mesquita MF
    J Prosthodont; 2024 Mar; ():. PubMed ID: 38513224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of the Application of Different Surface Treatment Methods on the Strength of Titanium Alloy Sheet Adhesive Lap Joints.
    Rudawska A; Zaleski K; Miturska I; Skoczylas A
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31842308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Additively Manufactured 316L Stainless Steel Subjected to a Duplex Peening-PVD Coating Treatment.
    Bonnici L; Buhagiar J; Cassar G; Vella KA; Chen J; Zhang X; Huang Z; Zammit A
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Shot Peening on Redistribution of Residual Stress Field in Friction Stir Welding of 2219 Aluminum Alloy.
    Nie L; Wu Y; Gong H; Chen D; Guo X
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.
    Sing SL; An J; Yeong WY; Wiria FE
    J Orthop Res; 2016 Mar; 34(3):369-85. PubMed ID: 26488900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Laser Shock Peening on Fretting Fatigue Life of TC11 Titanium Alloy.
    Yang X; Zhang H; Cui H; Wen C
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33105746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of Fatigue Strength Improvement by CFRP Laminates and Shot Peening onto the Tension Flanges Joining Corrugated SteelWebs.
    Wang ZY; Wang QY; Liu YJ
    Materials (Basel); 2015 Aug; 8(8):5348-5362. PubMed ID: 28793509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tailoring Microstructure and Mechanical Properties of Additively-Manufactured Ti6Al4V Using Post Processing.
    Ganor YI; Tiferet E; Vogel SC; Brown DW; Chonin M; Pesach A; Hajaj A; Garkun A; Samuha S; Shneck RZ; Yeheskel O
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Research Status and Prospect of Additive Manufactured Nickel-Titanium Shape Memory Alloys.
    Wen S; Gan J; Li F; Zhou Y; Yan C; Shi Y
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.