These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
437 related articles for article (PubMed ID: 32408699)
1. Essential Oils as Antiviral Agents. Potential of Essential Oils to Treat SARS-CoV-2 Infection: An Silva JKRD; Figueiredo PLB; Byler KG; Setzer WN Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32408699 [TBL] [Abstract][Full Text] [Related]
2. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Vardhan S; Sahoo SK Comput Biol Med; 2020 Sep; 124():103936. PubMed ID: 32738628 [TBL] [Abstract][Full Text] [Related]
3. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306 [TBL] [Abstract][Full Text] [Related]
4. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Fantini J; Chahinian H; Yahi N Int J Antimicrob Agents; 2020 Aug; 56(2):106020. PubMed ID: 32405156 [TBL] [Abstract][Full Text] [Related]
5. Current targets and drug candidates for prevention and treatment of SARS-CoV-2 (COVID-19) infection. Goyal RK; Majeed J; Tonk R; Dhobi M; Patel B; Sharma K; Apparsundaram S Rev Cardiovasc Med; 2020 Sep; 21(3):365-384. PubMed ID: 33070542 [TBL] [Abstract][Full Text] [Related]
6. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. Souza PFN; Lopes FES; Amaral JL; Freitas CDT; Oliveira JTA Int J Biol Macromol; 2020 Dec; 164():66-76. PubMed ID: 32693122 [TBL] [Abstract][Full Text] [Related]
7. Alkamides and Piperamides as Potential Antivirals against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Gutierrez-Villagomez JM; Campos-García T; Molina-Torres J; López MG; Vázquez-Martínez J J Phys Chem Lett; 2020 Oct; 11(19):8008-8016. PubMed ID: 32840378 [TBL] [Abstract][Full Text] [Related]
8. Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2. Zhang XY; Huang HJ; Zhuang DL; Nasser MI; Yang MH; Zhu P; Zhao MY Infect Dis Poverty; 2020 Jul; 9(1):99. PubMed ID: 32690096 [TBL] [Abstract][Full Text] [Related]
9. Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Panda PK; Arul MN; Patel P; Verma SK; Luo W; Rubahn HG; Mishra YK; Suar M; Ahuja R Sci Adv; 2020 Jul; 6(28):eabb8097. PubMed ID: 32691011 [TBL] [Abstract][Full Text] [Related]
10. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 M Gurung AB; Ali MA; Lee J; Farah MA; Al-Anazi KM Life Sci; 2020 Aug; 255():117831. PubMed ID: 32450166 [TBL] [Abstract][Full Text] [Related]
11. In Silico Screening of Potential Chinese Herbal Medicine Against COVID-19 by Targeting SARS-CoV-2 3CLpro and Angiotensin Converting Enzyme II Using Molecular Docking. Gao LQ; Xu J; Chen SD Chin J Integr Med; 2020 Jul; 26(7):527-532. PubMed ID: 32632717 [TBL] [Abstract][Full Text] [Related]
12. Eucalyptus Oils Phytochemical Composition in Correlation with Their Newly Explored Anti-SARS-CoV-2 Potential: in Vitro and in Silico Approaches. El-Shiekh RA; Okba MM; Mandour AA; Kutkat O; Elshimy R; Nagaty HA; Ashour RM Plant Foods Hum Nutr; 2024 Jun; 79(2):410-416. PubMed ID: 38492174 [TBL] [Abstract][Full Text] [Related]
13. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). Bourgonje AR; Abdulle AE; Timens W; Hillebrands JL; Navis GJ; Gordijn SJ; Bolling MC; Dijkstra G; Voors AA; Osterhaus AD; van der Voort PH; Mulder DJ; van Goor H J Pathol; 2020 Jul; 251(3):228-248. PubMed ID: 32418199 [TBL] [Abstract][Full Text] [Related]
14. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Kumar Y; Singh H; Patel CN J Infect Public Health; 2020 Sep; 13(9):1210-1223. PubMed ID: 32561274 [TBL] [Abstract][Full Text] [Related]
15. Antiviral Activity of Type I, II, and III Interferons Counterbalances ACE2 Inducibility and Restricts SARS-CoV-2. Busnadiego I; Fernbach S; Pohl MO; Karakus U; Huber M; Trkola A; Stertz S; Hale BG mBio; 2020 Sep; 11(5):. PubMed ID: 32913009 [TBL] [Abstract][Full Text] [Related]
16. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Fantini J; Chahinian H; Yahi N Int J Antimicrob Agents; 2020 Aug; 56(2):106020. PubMed ID: 32862840 [TBL] [Abstract][Full Text] [Related]
17. Progress in Studies on Structural and Remedial Aspects of Newly Born Coronavirus, SARS-CoV-2. Gupta SP Curr Top Med Chem; 2020; 20(26):2362-2378. PubMed ID: 32962613 [TBL] [Abstract][Full Text] [Related]
19. Computational insights into tetracyclines as inhibitors against SARS-CoV-2 M Bharadwaj S; Lee KE; Dwivedi VD; Kang SG Life Sci; 2020 Sep; 257():118080. PubMed ID: 32653520 [TBL] [Abstract][Full Text] [Related]
20. SARS-CoV-2 host tropism: An in silico analysis of the main cellular factors. Rangel HR; Ortega JT; Maksoud S; Pujol FH; Serrano ML Virus Res; 2020 Nov; 289():198154. PubMed ID: 32918944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]