These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 32408742)
1. Functional Identification of Two Types of Carotene Hydroxylases from the Green Alga Liang MH; Xie H; Chen HH; Liang ZC; Jiang JG ACS Synth Biol; 2020 Jun; 9(6):1246-1253. PubMed ID: 32408742 [TBL] [Abstract][Full Text] [Related]
2. The bifunctional identification of both lycopene β- and ε-cyclases from the lutein-rich Dunaliella bardawil. Liang MH; Liang ZC; Chen HH; Jiang JG Enzyme Microb Technol; 2019 Dec; 131():109426. PubMed ID: 31615667 [TBL] [Abstract][Full Text] [Related]
3. Biosynthetic routes of hydroxylated carotenoids (xanthophylls) in Marchantia polymorpha, and production of novel and rare xanthophylls through pathway engineering in Escherichia coli. Takemura M; Maoka T; Misawa N Planta; 2015 Mar; 241(3):699-710. PubMed ID: 25467956 [TBL] [Abstract][Full Text] [Related]
4. Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Kim J; DellaPenna D Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3474-9. PubMed ID: 16492736 [TBL] [Abstract][Full Text] [Related]
5. Synergistic interactions between carotene ring hydroxylases drive lutein formation in plant carotenoid biosynthesis. Quinlan RF; Shumskaya M; Bradbury LM; Beltrán J; Ma C; Kennelly EJ; Wurtzel ET Plant Physiol; 2012 Sep; 160(1):204-14. PubMed ID: 22786888 [TBL] [Abstract][Full Text] [Related]
6. The evolution and function of carotenoid hydroxylases in Arabidopsis. Kim J; Smith JJ; Tian L; Dellapenna D Plant Cell Physiol; 2009 Mar; 50(3):463-79. PubMed ID: 19147649 [TBL] [Abstract][Full Text] [Related]
7. Creatinine combined with light increases the contents of lutein and β-carotene, the main carotenoids of Dunaliella bardawil. Xie SR; Li Y; Liang MH; Yan B; Jiang JG Enzyme Microb Technol; 2021 Nov; 151():109913. PubMed ID: 34649686 [TBL] [Abstract][Full Text] [Related]
8. Expression and functional analysis of citrus carotene hydroxylases: unravelling the xanthophyll biosynthesis in citrus fruits. Ma G; Zhang L; Yungyuen W; Tsukamoto I; Iijima N; Oikawa M; Yamawaki K; Yahata M; Kato M BMC Plant Biol; 2016 Jun; 16(1):148. PubMed ID: 27358074 [TBL] [Abstract][Full Text] [Related]
9. The Arabidopsis LUT1 locus encodes a member of the cytochrome p450 family that is required for carotenoid epsilon-ring hydroxylation activity. Tian L; Musetti V; Kim J; Magallanes-Lundback M; DellaPenna D Proc Natl Acad Sci U S A; 2004 Jan; 101(1):402-7. PubMed ID: 14709673 [TBL] [Abstract][Full Text] [Related]
10. Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae. Cunningham FX; Lee H; Gantt E Eukaryot Cell; 2007 Mar; 6(3):533-45. PubMed ID: 17085635 [TBL] [Abstract][Full Text] [Related]
11. Functional Characterization of a CruP-Like Isomerase in Chen HH; Pang XH; Dai JL; Jiang JG J Agric Food Chem; 2024 May; 72(17):10005-10013. PubMed ID: 38626461 [No Abstract] [Full Text] [Related]
12. Over-expression of Arabidopsis thaliana carotenoid hydroxylases individually and in combination with a beta-carotene ketolase provides insight into in vivo functions. Kim JE; Cheng KM; Craft NE; Hamberger B; Douglas CJ Phytochemistry; 2010 Feb; 71(2-3):168-78. PubMed ID: 19939422 [TBL] [Abstract][Full Text] [Related]
13. Functional analysis of beta- and epsilon-ring carotenoid hydroxylases in Arabidopsis. Tian L; Magallanes-Lundback M; Musetti V; DellaPenna D Plant Cell; 2003 Jun; 15(6):1320-32. PubMed ID: 12782726 [TBL] [Abstract][Full Text] [Related]
14. DbMADS regulates carotenoid metabolism by repressing two carotenogenic genes in the green alga Dunaliella sp. FACHB-847. Liang MH; Xie SR; Chen HH; Jiang JG J Cell Physiol; 2023 Jun; 238(6):1324-1335. PubMed ID: 37087727 [TBL] [Abstract][Full Text] [Related]
15. Progress in understanding the origin and functions of carotenoid hydroxylases in plants. Tian L; DellaPenna D Arch Biochem Biophys; 2004 Oct; 430(1):22-9. PubMed ID: 15325908 [TBL] [Abstract][Full Text] [Related]
16. Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation. Linden H Biochim Biophys Acta; 1999 Sep; 1446(3):203-12. PubMed ID: 10524195 [TBL] [Abstract][Full Text] [Related]
17. Functional Characterization of Lycopene β- and ε-Cyclases from a Lutein-Enriched Green Microalga Fang H; Liu J; Ma R; Zou Y; Ho SH; Chen J; Xie Y Mar Drugs; 2023 Jul; 21(7):. PubMed ID: 37504949 [TBL] [Abstract][Full Text] [Related]
18. The P450-type carotene hydroxylase PuCHY1 from Porphyra suggests the evolution of carotenoid metabolism in red algae. Yang LE; Huang XQ; Hang Y; Deng YY; Lu QQ; Lu S J Integr Plant Biol; 2014 Sep; 56(9):902-15. PubMed ID: 24942088 [TBL] [Abstract][Full Text] [Related]
19. Rice carotenoid β-ring hydroxylase CYP97A4 is involved in lutein biosynthesis. Lv MZ; Chao DY; Shan JX; Zhu MZ; Shi M; Gao JP; Lin HX Plant Cell Physiol; 2012 Jun; 53(6):987-1002. PubMed ID: 22470056 [TBL] [Abstract][Full Text] [Related]
20. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. Kim SH; Ahn YO; Ahn MJ; Lee HS; Kwak SS Phytochemistry; 2012 Feb; 74():69-78. PubMed ID: 22154923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]