These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32408805)

  • 1. Implications from cochlear implant insertion for cochlear mechanics.
    Kaufmann-Yehezkely M; Perez R; Sohmer H
    Cochlear Implants Int; 2020 Sep; 21(5):292-294. PubMed ID: 32408805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hearing at threshold intensities: by slow mechanical traveling waves or by fast cochlear fluid pressure waves.
    Sohmer H
    Audiol Res; 2020 Jul; 10(1):233. PubMed ID: 32944206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delayed low frequency hearing loss caused by cochlear implantation interventions via the round window but not cochleostomy.
    Rowe D; Chambers S; Hampson A; Eastwood H; Campbell L; O'Leary S
    Hear Res; 2016 Mar; 333():49-57. PubMed ID: 26739790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reflections on the role of a traveling wave along the basilar membrane in view of clinical and experimental findings.
    Sohmer H
    Eur Arch Otorhinolaryngol; 2015 Mar; 272(3):531-5. PubMed ID: 24740735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological Evidence of the Basilar-Membrane Travelling Wave and Frequency Place Coding of Sound in Cochlear Implant Recipients.
    Campbell L; Bester C; Iseli C; Sly D; Dragovic A; Gummer AW; O'Leary S
    Audiol Neurootol; 2017; 22(3):180-189. PubMed ID: 29084395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cochlear microphonic potential does not reflect the passive basilar membrane traveling wave.
    Perez R; Freeman S; Sichel JY; Sohmer H
    J Basic Clin Physiol Pharmacol; 2007; 18(3):159-72. PubMed ID: 17970565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cochlear activation at low sound intensities by a fluid pathway.
    Sohmer H; Sichel JY; Freeman S
    J Basic Clin Physiol Pharmacol; 2004; 15(1-2):1-14. PubMed ID: 15485126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cool approach to reducing electrode-induced trauma: Localized therapeutic hypothermia conserves residual hearing in cochlear implantation.
    Tamames I; King C; Bas E; Dietrich WD; Telischi F; Rajguru SM
    Hear Res; 2016 Sep; 339():32-9. PubMed ID: 27260269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Preliminary Investigation of the Air-Bone Gap: Changes in Intracochlear Sound Pressure With Air- and Bone-conducted Stimuli After Cochlear Implantation.
    Banakis Hartl RM; Mattingly JK; Greene NT; Jenkins HA; Cass SP; Tollin DJ
    Otol Neurotol; 2016 Oct; 37(9):1291-9. PubMed ID: 27579835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model.
    Reiss LA; Stark G; Nguyen-Huynh AT; Spear KA; Zhang H; Tanaka C; Li H
    Hear Res; 2015 Sep; 327():163-74. PubMed ID: 26087114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.
    Greene NT; Mattingly JK; Jenkins HA; Tollin DJ; Easter JR; Cass SP
    Otol Neurotol; 2015 Sep; 36(9):1554-61. PubMed ID: 26333018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postoperative objective detecting techniques for cochlear implant children with inner ear malformation.
    Qiao XF; Li X; Zhang QW; Li TL; Wang D
    Int J Pediatr Otorhinolaryngol; 2017 Nov; 102():1-6. PubMed ID: 29106852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of a Cochlear Implant Electrode Array on the Middle Ear Transfer Function.
    Pazen D; Anagiotos A; Nünning M; Gostian AO; Ortmann M; Beutner D
    Ear Hear; 2017; 38(4):e241-e255. PubMed ID: 28207578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial deafness treatment with the nucleus straight research array cochlear implant.
    Skarzynski H; Lorens A; Matusiak M; Porowski M; Skarzynski PH; James CJ
    Audiol Neurootol; 2012; 17(2):82-91. PubMed ID: 21846981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of cochlear excitation at low intensities.
    Sichel JY; Perez R; Freeman S; Sohmer H
    J Basic Clin Physiol Pharmacol; 2005; 16(2-3):81-99. PubMed ID: 16285462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions.
    Nuttall AL; Ren T
    Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracochlear Electrocochleography: Response Patterns During Cochlear Implantation and Hearing Preservation.
    Giardina CK; Brown KD; Adunka OF; Buchman CA; Hutson KA; Pillsbury HC; Fitzpatrick DC
    Ear Hear; 2019; 40(4):833-848. PubMed ID: 30335669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission of oto-acoustic emissions within the cochlea.
    Sichel JY; Freeman S; Perez R; Sohmer H
    J Basic Clin Physiol Pharmacol; 2006; 17(3):143-57. PubMed ID: 17598306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standard cochlear implantation of adults with residual low-frequency hearing: implications for combined electro-acoustic stimulation.
    Novak MA; Black JM; Koch DB
    Otol Neurotol; 2007 Aug; 28(5):609-14. PubMed ID: 17514064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.