These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 32409064)
1. Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers. Zou J; Yu JG Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110910. PubMed ID: 32409064 [TBL] [Abstract][Full Text] [Related]
2. Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers. Zou J; Lan XW; Zhao GQ; Huang ZN; Liu YP; Yu JG Mikrochim Acta; 2020 Nov; 187(11):636. PubMed ID: 33141322 [TBL] [Abstract][Full Text] [Related]
3. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin. Liang J; Song Y; Zhao Y; Gao Y; Hou J; Yang G Mikrochim Acta; 2023 Oct; 190(11):433. PubMed ID: 37814099 [TBL] [Abstract][Full Text] [Related]
4. Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers. Xiao Q; Lu S; Huang C; Su W; Huang S Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834863 [TBL] [Abstract][Full Text] [Related]
5. Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(L-glutamic acid). Tao Y; Dai J; Kong Y; Sha Y Anal Chem; 2014 Mar; 86(5):2633-9. PubMed ID: 24484527 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical chiral sensor for recognition of amino acid enantiomers with cyclodextrin-based microporous organic networks. Zhang X; Wang F; Chen Z Anal Chim Acta; 2024 Aug; 1316():342879. PubMed ID: 38969416 [TBL] [Abstract][Full Text] [Related]
7. Chiral recognition of tyrosine enantiomers on a novel bis-aminosaccharides composite modified glassy carbon electrode. Zou J; Yu JG Anal Chim Acta; 2019 Dec; 1088():35-44. PubMed ID: 31623714 [TBL] [Abstract][Full Text] [Related]
8. An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition. Liu N; Liu J; Niu X; Wang J; Guo R; Mo Z Mikrochim Acta; 2021 Apr; 188(5):163. PubMed ID: 33839948 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II). Qian J; Yi Y; Zhang D; Zhu G Mikrochim Acta; 2019 May; 186(6):358. PubMed ID: 31098704 [TBL] [Abstract][Full Text] [Related]
10. Chiral voltammetric sensor for tryptophan enantiomers by using a self-assembled multiwalled carbon nanotubes/polyaniline/sodium alginate composite. Niu X; Yang X; Li H; Shi Q; Wang K Chirality; 2021 May; 33(5):248-260. PubMed ID: 33675271 [TBL] [Abstract][Full Text] [Related]
11. Perylene-functionalized graphene sheets modified with chitosan for voltammetric discrimination of tryptophan enantiomers. Yang X; Niu X; Mo Z; Guo R; Liu N; Zhao P; Liu Z Mikrochim Acta; 2019 May; 186(6):333. PubMed ID: 31065866 [TBL] [Abstract][Full Text] [Related]
12. A highly sensitive electrochemical sensor containing nitrogen-doped ordered mesoporous carbon (NOMC) for voltammetric determination of l-tryptophan. Zhang Y; Waterhouse GIN; Xiang ZP; Che J; Chen C; Sun W Food Chem; 2020 Oct; 326():126976. PubMed ID: 32413756 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous electrochemical recognition of tryptophan and penicillamine enantiomers based on MOF-modified β-CD. Hou Y; Liang J; Kuang X; Kuang R Carbohydr Polym; 2022 Aug; 290():119474. PubMed ID: 35550750 [TBL] [Abstract][Full Text] [Related]
14. Biomimetic sensor for ethambutol employing β-cyclodextrin mediated chiral copper metal organic framework and carbon nanofibers modified glassy carbon electrode. Upadhyay SS; Gadhari NS; Srivastava AK Biosens Bioelectron; 2020 Oct; 165():112397. PubMed ID: 32729518 [TBL] [Abstract][Full Text] [Related]
15. Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modified β-cyclodextrin as recognition element. Song J; Yang C; Ma J; Han Q; Ran P; Fu Y Mikrochim Acta; 2018 Mar; 185(4):230. PubMed ID: 29594758 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of Co3O4 nanoparticles-decorated graphene composite for determination of L-tryptophan. Ye D; Luo L; Ding Y; Liu B; Liu X Analyst; 2012 Jun; 137(12):2840-5. PubMed ID: 22567661 [TBL] [Abstract][Full Text] [Related]
17. Perylene-functionalized graphene sheets modified with β-cyclodextrin for the voltammetric discrimination of phenylalanine enantiomers. Niu X; Yang X; Mo Z; Guo R; Liu N; Zhao P; Liu Z Bioelectrochemistry; 2019 Oct; 129():189-198. PubMed ID: 31195330 [TBL] [Abstract][Full Text] [Related]
18. Supramolecular assembly induced chiral interface for electrochemical recognition of tryptophan enantiomers. Sun YX; Zhang DD; Sheng Y; Xu D; Zhang R; Bradley M Anal Methods; 2021 May; 13(17):2011-2020. PubMed ID: 33955988 [TBL] [Abstract][Full Text] [Related]
19. A molecularly imprinted copolymer based electrochemical sensor for the highly sensitive detection of L-Tryptophan. Xia Y; Zhao F; Zeng B Talanta; 2020 Jan; 206():120245. PubMed ID: 31514823 [TBL] [Abstract][Full Text] [Related]
20. Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-Cyclodextrin immobilized on reduced graphene oxide. Zaidi SA Biosens Bioelectron; 2017 Aug; 94():714-718. PubMed ID: 28395254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]