These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 32409083)
1. Triethyleneglycol dimethacrylate addition improves the 3D-printability and construct properties of a GelMA-nHA composite system towards tissue engineering applications. Comeau PA; Willett TL Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110937. PubMed ID: 32409083 [TBL] [Abstract][Full Text] [Related]
2. Gelatin Methacryloyl (GelMA) - 45S5 Bioactive Glass (BG) Composites for Bone Tissue Engineering: 3D Extrusion Printability and Cytocompatibility Assessment Using Human Osteoblasts. Akhtar M; Peng P; Bernhardt A; Gelinsky M; Ur Rehman MA; Boccaccini AR; Basu B ACS Biomater Sci Eng; 2024 Aug; 10(8):5122-5135. PubMed ID: 39038164 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of gelatin methacrylate/nanohydroxyapatite microgel arrays for periodontal tissue regeneration. Chen X; Bai S; Li B; Liu H; Wu G; Liu S; Zhao Y Int J Nanomedicine; 2016; 11():4707-4718. PubMed ID: 27695327 [TBL] [Abstract][Full Text] [Related]
4. BisGMA/TEGDMA dental nanocomposites containing glyoxylic acid-modified high-aspect ratio hydroxyapatite nanofibers with enhanced dispersion. Chen L; Xu C; Wang Y; Shi J; Yu Q; Li H Biomed Mater; 2012 Aug; 7(4):045014. PubMed ID: 22689264 [TBL] [Abstract][Full Text] [Related]
5. Acrylated epoxidized soybean oil/hydroxyapatite-based nanocomposite scaffolds prepared by additive manufacturing for bone tissue engineering. Mondal D; Srinivasan A; Comeau P; Toh YC; Willett TL Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111400. PubMed ID: 33255003 [TBL] [Abstract][Full Text] [Related]
6. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765 [TBL] [Abstract][Full Text] [Related]
7. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering. Müller M; Fisch P; Molnar M; Eggert S; Binelli M; Maniura-Weber K; Zenobi-Wong M Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110510. PubMed ID: 31924006 [TBL] [Abstract][Full Text] [Related]
8. 3D printing of complex GelMA-based scaffolds with nanoclay. Gao Q; Niu X; Shao L; Zhou L; Lin Z; Sun A; Fu J; Chen Z; Hu J; Liu Y; He Y Biofabrication; 2019 Apr; 11(3):035006. PubMed ID: 30836349 [TBL] [Abstract][Full Text] [Related]
9. The effect of triglycerol diacrylate on the printability and properties of UV curable, bio-based nanohydroxyapatite composites. Diederichs EV; Mondal D; Patil H; Gorbet M; Willett TL J Mech Behav Biomed Mater; 2024 May; 153():106499. PubMed ID: 38490049 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of gelatin cryogels reinforced with hydroxyapatites with different morphologies and interfacial bonding. Gu L; Zhang Y; Zhang L; Huang Y; Zuo D; Cai Q; Yang X Biomed Mater; 2020 Mar; 15(3):035012. PubMed ID: 32031987 [TBL] [Abstract][Full Text] [Related]
11. Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration. Gu L; Zhang J; Li L; Du Z; Cai Q; Yang X Biomed Mater; 2019 Apr; 14(4):045001. PubMed ID: 30939454 [TBL] [Abstract][Full Text] [Related]
12. Mechanical properties of dental resin/composite containing urchin-like hydroxyapatite. Liu F; Sun B; Jiang X; Aldeyab SS; Zhang Q; Zhu M Dent Mater; 2014 Dec; 30(12):1358-68. PubMed ID: 25458352 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration. Zhou X; Tenaglio S; Esworthy T; Hann SY; Cui H; Webster TJ; Fenniri H; Zhang LG ACS Appl Mater Interfaces; 2020 Jul; 12(29):33219-33228. PubMed ID: 32603082 [TBL] [Abstract][Full Text] [Related]
14. Preparation and Properties of Nano-Hydroxyapatite/Gelatin/Poly(vinyl alcohol) Composite Membrane. Liao H; Shi K; Peng J; Qu Y; Liao J; Qian Z J Nanosci Nanotechnol; 2015 Jun; 15(6):4188-92. PubMed ID: 26369028 [TBL] [Abstract][Full Text] [Related]
15. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757 [TBL] [Abstract][Full Text] [Related]
16. Constructing a biomimetic nanocomposite with the Song T; Zhao F; Wang Y; Li D; Lei N; Li X; Xiao Y; Zhang X J Mater Chem B; 2021 Mar; 9(10):2469-2482. PubMed ID: 33646220 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate. Tian M; Gao Y; Liu Y; Liao Y; Hedin NE; Fong H Dent Mater; 2008 Feb; 24(2):235-43. PubMed ID: 17572485 [TBL] [Abstract][Full Text] [Related]
18. Tuning mechanical reinforcement and bioactivity of 3D printed ternary nanocomposites by interfacial peptide-polymer conjugates. Bas O; Hanßke F; Lim J; Ravichandran A; Kemnitz E; Teoh SH; Hutmacher DW; Börner HG Biofabrication; 2019 Jun; 11(3):035028. PubMed ID: 30645987 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel. Xavier Mendes A; Moraes Silva S; O'Connell CD; Duchi S; Quigley AF; Kapsa RMI; Moulton SE ACS Biomater Sci Eng; 2021 Jun; 7(6):2279-2295. PubMed ID: 33956434 [TBL] [Abstract][Full Text] [Related]
20. UHMWPE-MWCNT-nHA based hybrid trilayer nanobiocomposite: Processing approach, physical properties, stem/bone cell functionality, and blood compatibility. Naskar S; Panda AK; Jana A; Kanagaraj S; Basu B J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2320-2343. PubMed ID: 31994833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]