These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32409585)

  • 21. Transcriptional regulation of the bidirectional hydrogenase in the cyanobacterium Synechocystis 6803.
    Kiss E; Kós PB; Vass I
    J Biotechnol; 2009 Jun; 142(1):31-7. PubMed ID: 19480945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoinduced hydrogen production by direct electron transfer from photosystem I cross-linked with cytochrome c3 to [NiFe]-hydrogenase.
    Ihara M; Nakamoto H; Kamachi T; Okura I; Maeda M
    Photochem Photobiol; 2006; 82(6):1677-85. PubMed ID: 16836469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cyanobacterium Synechocystis sp. PCC 6803 is able to express an active [FeFe]-hydrogenase without additional maturation proteins.
    Berto P; D'Adamo S; Bergantino E; Vallese F; Giacometti GM; Costantini P
    Biochem Biophys Res Commun; 2011 Feb; 405(4):678-83. PubMed ID: 21284939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcription activator.
    Gutekunst K; Phunpruch S; Schwarz C; Schuchardt S; Schulz-Friedrich R; Appel J
    Mol Microbiol; 2005 Nov; 58(3):810-23. PubMed ID: 16238629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LexA, a transcription regulator binding in the promoter region of the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803.
    Oliveira P; Lindblad P
    FEMS Microbiol Lett; 2005 Oct; 251(1):59-66. PubMed ID: 16102913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex I).
    Appel J; Schulz R
    Biochim Biophys Acta; 1996 Dec; 1298(2):141-7. PubMed ID: 8980640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in the function and regulation of hydrogenase in the cyanobacterium Synechocystis PCC6803.
    Cassier-Chauvat C; Veaudor T; Chauvat F
    Int J Mol Sci; 2014 Oct; 15(11):19938-51. PubMed ID: 25365180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disruption of Hydrogen Gas Synthesis Enhances the Cellular Levels of NAD(P)H, Glycogen, Poly(3-hydroxybutyrate) and Photosynthetic Pigments Under Specific Nutrient Condition(s) in Cyanobacterium Synechocystis sp. PCC 6803.
    Sukkasam N; Incharoensakdi A; Monshupanee T
    Plant Cell Physiol; 2022 Jan; 63(1):135-147. PubMed ID: 34698867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-vivo turnover frequency of the cyanobacterial NiFe-hydrogenase during photohydrogen production outperforms in-vitro systems.
    Gutekunst K; Hoffmann D; Westernströer U; Schulz R; Garbe-Schönberg D; Appel J
    Sci Rep; 2018 Apr; 8(1):6083. PubMed ID: 29666458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Syntrophomonas wolfei Uses an NADH-Dependent, Ferredoxin-Independent [FeFe]-Hydrogenase To Reoxidize NADH.
    Losey NA; Mus F; Peters JW; Le HM; McInerney MJ
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28802265
    [No Abstract]   [Full Text] [Related]  

  • 31. The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state).
    Ogata H; Kellers P; Lubitz W
    J Mol Biol; 2010 Sep; 402(2):428-44. PubMed ID: 20673834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rewiring cyanobacterial photosynthesis by the implementation of an oxygen-tolerant hydrogenase.
    Lupacchini S; Appel J; Stauder R; Bolay P; Klähn S; Lettau E; Adrian L; Lauterbach L; Bühler B; Schmid A; Toepel J
    Metab Eng; 2021 Nov; 68():199-209. PubMed ID: 34673236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron-transfer subunits of the NiFe hydrogenases in Thiocapsa roseopersicina BBS.
    Palágyi-Mészáros LS; Maróti J; Latinovics D; Balogh T; Klement E; Medzihradszky KF; Rákhely G; Kovács KL
    FEBS J; 2009 Jan; 276(1):164-74. PubMed ID: 19019079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of a cyanobacterial-like uptake [NiFe] hydrogenase: EPR and FTIR spectroscopic studies of the enzyme from Acidithiobacillus ferrooxidans.
    Schröder O; Bleijlevens B; de Jongh TE; Chen Z; Li T; Fischer J; Förster J; Friedrich CG; Bagley KA; Albracht SP; Lubitz W
    J Biol Inorg Chem; 2007 Feb; 12(2):212-33. PubMed ID: 17082918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into Flavin-based Electron Bifurcation via the NADH-dependent Reduced Ferredoxin:NADP Oxidoreductase Structure.
    Demmer JK; Huang H; Wang S; Demmer U; Thauer RK; Ermler U
    J Biol Chem; 2015 Sep; 290(36):21985-95. PubMed ID: 26139605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803.
    Maeda T; Vardar G; Self WT; Wood TK
    BMC Biotechnol; 2007 May; 7():25. PubMed ID: 17521447
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A bacterial electron-bifurcating hydrogenase.
    Schuchmann K; Müller V
    J Biol Chem; 2012 Sep; 287(37):31165-71. PubMed ID: 22810230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis of the redox switches in the NAD
    Shomura Y; Taketa M; Nakashima H; Tai H; Nakagawa H; Ikeda Y; Ishii M; Igarashi Y; Nishihara H; Yoon KS; Ogo S; Hirota S; Higuchi Y
    Science; 2017 Sep; 357(6354):928-932. PubMed ID: 28860386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis.
    Soboh B; Linder D; Hedderich R
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2451-2463. PubMed ID: 15256587
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of global ferredoxin interaction networks in Chlamydomonas reinhardtii.
    Peden EA; Boehm M; Mulder DW; Davis R; Old WM; King PW; Ghirardi ML; Dubini A
    J Biol Chem; 2013 Dec; 288(49):35192-209. PubMed ID: 24100040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.