BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32409753)

  • 1. Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations.
    Uddin MK; Nasar A
    Sci Rep; 2020 May; 10(1):7983. PubMed ID: 32409753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Removal of Toxic Remazol Brilliant Blue-R Dye from Aqueous Solutions Using
    Parimelazhagan V; Yashwath P; Arukkani Pushparajan D; Carpenter J
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of Rhodamine B from an aqueous solution by acrylic-acid-modified walnut shells: characterization, kinetics, and thermodynamics.
    Guo X; Liu Z; Tong Z; Jiang N; Chen W
    Environ Technol; 2023 May; 44(12):1691-1704. PubMed ID: 34873998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: isotherms, kinetics, thermodynamic and optimization by Taguchi method.
    Mosoarca G; Vancea C; Popa S; Gheju M; Boran S
    Sci Rep; 2020 Oct; 10(1):17676. PubMed ID: 33077788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of cationic dye from aqueous solutions by date pits: Equilibrium, kinetic, thermodynamic studies, and batch adsorber design.
    Mansour RA; Aboeleneen NM; AbdelMonem NM
    Int J Phytoremediation; 2018 Aug; 20(10):1062-1074. PubMed ID: 30095308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of effectiveness of pyrolysis products on removal of alizarin yellow GG from aqueous solution: a comparative study with commercial activated carbon.
    Kaya N; Yildiz Uzun Z
    Water Sci Technol; 2020 Mar; 81(6):1191-1208. PubMed ID: 32597406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of Pb (II) from aqueous solution by sulfur-functionalized walnut shell.
    Lu XG; Guo YT
    Environ Sci Pollut Res Int; 2019 May; 26(13):12776-12787. PubMed ID: 30877546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lotus seedpod as a low-cost biomass for potential methylene blue adsorption.
    He Q; Wang H; Zhang J; Zou Z; Zhou J; Yang K; Zheng L
    Water Sci Technol; 2016 Dec; 74(11):2560-2568. PubMed ID: 27973361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design.
    Dawood S; Sen TK
    Water Res; 2012 Apr; 46(6):1933-46. PubMed ID: 22289676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of methylene blue dye from aqueous solutions by adsorption on levulinic acid-modified natural shells.
    Kocaman S
    Int J Phytoremediation; 2020; 22(8):885-895. PubMed ID: 32151138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new absorbent by modifying walnut shell for the removal of anionic dye: kinetic and thermodynamic studies.
    Cao JS; Lin JX; Fang F; Zhang MT; Hu ZR
    Bioresour Technol; 2014 Jul; 163():199-205. PubMed ID: 24813388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient and adsorption of methylene blue dye on a natural clay surface: modeling and equilibrium studies.
    El-Habacha M; Dabagh A; Lagdali S; Miyah Y; Mahmoudy G; Sinan F; Chiban M; Iaich S; Zerbet M
    Environ Sci Pollut Res Int; 2023 May; ():. PubMed ID: 37213016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of methylene blue onto betel nut husk-based activated carbon prepared by sodium hydroxide activation process.
    Bardhan M; Novera TM; Tabassum M; Islam MA; Jawad AH; Islam MA
    Water Sci Technol; 2020 Nov; 82(9):1932-1949. PubMed ID: 33201856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of nickel sulfide nanoparticles loaded on activated carbon as a novel adsorbent for the competitive removal of Methylene blue and Safranin-O.
    Ghaedi M; Pakniat M; Mahmoudi Z; Hajati S; Sahraei R; Daneshfar A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():402-9. PubMed ID: 24412794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a new low cost natural phosphate doped by nickel oxide nanoparticles for capacitive adsorption of reactive red 141 azo dye.
    Hafdi H; Joudi M; Mouldar J; Hatimi B; Nasrellah H; El Mhammedi MA; Bakasse M
    Environ Res; 2020 May; 184():109322. PubMed ID: 32146215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sustainable process for adsorptive removal of methylene blue onto a food grade mucilage: kinetics, thermodynamics, and equilibrium evaluation.
    Mijinyawa AH; Durga G; Mishra A
    Int J Phytoremediation; 2019; 21(11):1122-1129. PubMed ID: 31056928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of macroalgal biomass derived biochar and bioelectrochemical system with Shewanella for the adsorptive removal and biodegradation of toxic azo dye.
    Gurav R; Bhatia SK; Choi TR; Choi YK; Kim HJ; Song HS; Lee SM; Lee Park S; Lee HS; Koh J; Jeon JM; Yoon JJ; Yang YH
    Chemosphere; 2021 Feb; 264(Pt 2):128539. PubMed ID: 33059279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorptive removal of methylene blue by tea waste.
    Uddin MT; Islam MA; Mahmud S; Rukanuzzaman M
    J Hazard Mater; 2009 May; 164(1):53-60. PubMed ID: 18801614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nigella sativa seed based nanohybrid composite-Fe
    Siddiqui SI; Zohra F; Chaudhry SA
    Environ Res; 2019 Nov; 178():108667. PubMed ID: 31454728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive new study on the removal of Pb (II) from aqueous solution by şırnak coal-derived char.
    Batur E; Baytar O; Kutluay S; Horoz S; Şahin Ö
    Environ Technol; 2021 Jan; 42(3):505-520. PubMed ID: 32804581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.