These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32409809)

  • 1. Catalyst- and solvent-free efficient access to N-alkylated amines via reductive amination using HBpin.
    Pandey VK; Bauri S; Rit A
    Org Biomol Chem; 2020 May; 18(20):3853-3857. PubMed ID: 32409809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroboration and reductive amination of ketones and aldehydes with HBpin by a bench stable Pd(II)-catalyst.
    Mahato S; Rawal P; Devadkar AK; Joshi M; Roy Choudhury A; Biswas B; Gupta P; Panda TK
    Org Biomol Chem; 2022 Feb; 20(5):1103-1111. PubMed ID: 35029621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic Hydroboration and Reductive Amination of Carbonyl Compounds by HBpin using a Zinc Promoter.
    Kumar R; Rawal P; Banerjee I; Pada Nayek H; Gupta P; Panda TK
    Chem Asian J; 2022 Mar; 17(5):e202200013. PubMed ID: 35020275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalyst-Free and Solvent-Free Facile Hydroboration of Imines.
    Pandey VK; Donthireddy SNR; Rit A
    Chem Asian J; 2019 Oct; 14(19):3255-3258. PubMed ID: 31430049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Catalyst and Solvent Free Route for the Synthesis of N-Substituted Pyrrolidones from Levulinic Acid.
    Dolui P; Tiwari V; Saini P; Karmakar T; Makhal K; Goel H; Elias AJ
    Chemistry; 2022 Aug; 28(43):e202200829. PubMed ID: 35579503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive amination using cobalt-based nanoparticles for synthesis of amines.
    Murugesan K; Chandrashekhar VG; Senthamarai T; Jagadeesh RV; Beller M
    Nat Protoc; 2020 Apr; 15(4):1313-1337. PubMed ID: 32203487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast reductive amination by transfer hydrogenation "on water".
    Lei Q; Wei Y; Talwar D; Wang C; Xue D; Xiao J
    Chemistry; 2013 Mar; 19(12):4021-9. PubMed ID: 23401346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Step One-Pot Reductive Amination of Furanic Aldehydes Using CuAlO
    Nuzhdin AL; Bukhtiyarova MV; Bukhtiyarov VI
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33080807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protecting-group-free synthesis of amines: synthesis of primary amines from aldehydes via reductive amination.
    Dangerfield EM; Plunkett CH; Win-Mason AL; Stocker BL; Timmer MS
    J Org Chem; 2010 Aug; 75(16):5470-7. PubMed ID: 20666449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Synthesis of Primary Amines through Reductive Amination Employing an Iron Catalyst.
    Bäumler C; Bauer C; Kempe R
    ChemSusChem; 2020 Jun; 13(12):3110-3114. PubMed ID: 32314866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot reductive mono-N-alkylation of aniline and nitroarene derivatives using aldehydes.
    Byun E; Hong B; De Castro KA; Lim M; Rhee H
    J Org Chem; 2007 Dec; 72(25):9815-7. PubMed ID: 17997570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures(1).
    Abdel-Magid AF; Carson KG; Harris BD; Maryanoff CA; Shah RD
    J Org Chem; 1996 May; 61(11):3849-3862. PubMed ID: 11667239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domino Hydrogenation-Reductive Amination of Phenols, a Simple Process To Access Substituted Cyclohexylamines.
    Jumde VR; Petricci E; Petrucci C; Santillo N; Taddei M; Vaccaro L
    Org Lett; 2015 Aug; 17(16):3990-3. PubMed ID: 26230604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary amine formation from reductive amination of carbonyl compounds promoted by Lewis acid using the InCl3/Et3SiH system.
    Lee OY; Law KL; Yang D
    Org Lett; 2009 Aug; 11(15):3302-5. PubMed ID: 19591453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct electrochemical reductive amination between aldehydes and amines with a H/D-donor solvent.
    Hong H; Zou Z; Liang G; Pu S; Hu J; Chen L; Zhu Z; Li Y; Huang Y
    Org Biomol Chem; 2020 Aug; 18(30):5832-5837. PubMed ID: 32700716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Pd/Fe3O4 nanoparticles by use of Euphorbia stracheyi Boiss root extract: A magnetically recoverable catalyst for one-pot reductive amination of aldehydes at room temperature.
    Nasrollahzadeh M; Sajadi SM
    J Colloid Interface Sci; 2016 Feb; 464():147-52. PubMed ID: 26615511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Easy Access to Tertiary Amines from Carbonyl Compounds with Substituted Amine-Boranes: A Substrate, Catalyst, and Additive-Free Approach Under Mild Conditions.
    Chowdhury D; Mukherjee A
    Chem Asian J; 2023 Oct; 18(20):e202300661. PubMed ID: 37671911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-Doped Carbon-Supported Nickel Nanoparticles: A Robust Catalyst to Bridge the Hydrogenation of Nitriles and the Reductive Amination of Carbonyl Compounds for the Synthesis of Primary Amines.
    Zhang Y; Yang H; Chi Q; Zhang Z
    ChemSusChem; 2019 Mar; 12(6):1246-1255. PubMed ID: 30600939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic Reductive Amination of Aldehydes and Ketones With Nitro Compounds: New Light on an Old Reaction.
    Sukhorukov AY
    Front Chem; 2020; 8():215. PubMed ID: 32351929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-Linked Cyclodextrins Bimetallic Nanocatalysts: Applications in Microwave-Assisted Reductive Aminations.
    Calcio Gaudino E; Acciardo E; Tabasso S; Manzoli M; Cravotto G; Varma RS
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31963796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.