These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 32409941)
1. Novel formulations of Bacillus thuringiensis var. kurstaki: an eco-friendly approach for management of lepidopteran pests. Vimala Devi PS; Duraimurugan P; Poorna Chandrika KSV; Vineela V; Hari PP World J Microbiol Biotechnol; 2020 May; 36(5):78. PubMed ID: 32409941 [TBL] [Abstract][Full Text] [Related]
2. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
3. Elimination of Gut Microbes with Antibiotics Confers Resistance to Bacillus thuringiensis Toxin Proteins in Helicoverpa armigera (Hubner). Visweshwar R; Sharma HC; Akbar SM; Sreeramulu K Appl Biochem Biotechnol; 2015 Dec; 177(8):1621-37. PubMed ID: 26384494 [TBL] [Abstract][Full Text] [Related]
4. Baseline sensitivity of maize borers in India to the Bacillus thuringiensis insecticidal proteins Cry1A.105 and Cry2Ab2. Jalali SK; Yadavalli L; Ojha R; Kumar P; Sulaikhabeevi SB; Sharma R; Nair R; Kadanur RC; Kamath SP; Komarlingam MS Pest Manag Sci; 2015 Aug; 71(8):1082-90. PubMed ID: 25143318 [TBL] [Abstract][Full Text] [Related]
5. Bacillus thuringiensis insecticidal crystal proteins affect lifespan and reproductive performance of Helicoverpa armigera and Spodoptera exigua adults. Zhang Y; Ma Y; Wan PJ; Mu LL; Li GQ J Econ Entomol; 2013 Apr; 106(2):614-21. PubMed ID: 23786046 [TBL] [Abstract][Full Text] [Related]
6. Effectiveness of Bacillus thuringiensis-transgenic chickpeas and the entomopathogenic fungus Metarhizium anisopliae in controlling Helicoverpa armigera (Lepidoptera: Noctuidae). Lawo NC; Mahon RJ; Milner RJ; Sarmah BK; Higgins TJ; Romeis J Appl Environ Microbiol; 2008 Jul; 74(14):4381-9. PubMed ID: 18487396 [TBL] [Abstract][Full Text] [Related]
7. Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac. Paramasiva I; Shouche Y; Kulkarni GJ; Krishnayya PV; Akbar SM; Sharma HC Arch Insect Biochem Physiol; 2014 Dec; 87(4):201-13. PubMed ID: 25195523 [TBL] [Abstract][Full Text] [Related]
8. Identification of Bacillus thuringiensis Strains for the Management of Lepidopteran Pests. Pinheiro DH; Valicente FH Neotrop Entomol; 2021 Oct; 50(5):804-811. PubMed ID: 34398398 [TBL] [Abstract][Full Text] [Related]
9. Isolation and molecular characterization of Bacillus thuringiensis subsp. kurstaki toxic to lepidopteran pests Spodoptera spp. and Plutella xylostella. Park MG; Choi JY; Kim JH; Park DH; Wang M; Kim HJ; Kim SH; Lee HY; Je YH Pest Manag Sci; 2022 Jul; 78(7):2976-2984. PubMed ID: 35419912 [TBL] [Abstract][Full Text] [Related]
10. Knockout of three aminopeptidase N genes does not affect susceptibility of Helicoverpa armigera larvae to Bacillus thuringiensis Cry1A and Cry2A toxins. Wang J; Zuo YY; Li LL; Wang H; Liu SY; Yang YH; Wu YD Insect Sci; 2020 Jun; 27(3):440-448. PubMed ID: 30767423 [TBL] [Abstract][Full Text] [Related]
11. Essential oil of Siparuna guianensis as an alternative tool for improved lepidopteran control and resistance management practices. Lourenço AM; Haddi K; Ribeiro BM; Corrêia RFT; Tomé HVV; Santos-Amaya O; Pereira EJG; Guedes RNC; Santos GR; Oliveira EE; Aguiar RWS Sci Rep; 2018 May; 8(1):7215. PubMed ID: 29740112 [TBL] [Abstract][Full Text] [Related]
12. Recombinant Deng S-Q; Li N; Yang X-K; Lu H-Z; Liu J-H; Peng Z-Y; Wang L-M; Zhang M; Zhang C; Chen C Microbiol Spectr; 2024 Jul; 12(7):e0379223. PubMed ID: 38809029 [TBL] [Abstract][Full Text] [Related]
13. Cloning, characterization, and expression of a new cry1Ab gene from DOR Bt-1, an indigenous isolate of Bacillus thuringiensis. Reddy VP; Rao NN; Devi PS; Sivaramakrishnan S; Narasu ML; Kumar VD Mol Biotechnol; 2013 Jul; 54(3):795-802. PubMed ID: 23224937 [TBL] [Abstract][Full Text] [Related]
14. Expression of Bacillus thuringiensis toxin Cyt2Ba in the entomopathogenic fungus Beauveria bassiana increases its virulence towards Aedes mosquitoes. Deng SQ; Zou WH; Li DL; Chen JT; Huang Q; Zhou LJ; Tian XX; Chen YJ; Peng HJ PLoS Negl Trop Dis; 2019 Jul; 13(7):e0007590. PubMed ID: 31306427 [TBL] [Abstract][Full Text] [Related]
15. Toxicity of Bacillus thuringiensis Strains to Six Lepidopteran Pests of Brazilian Agricultural Landscape. de Carvalho KS; Leite NA; Mendes SM; de Paula Lana UG; Valicente FH Neotrop Entomol; 2022 Dec; 51(6):869-876. PubMed ID: 36214967 [TBL] [Abstract][Full Text] [Related]
16. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Ma G; Roberts H; Sarjan M; Featherstone N; Lahnstein J; Akhurst R; Schmidt O Insect Biochem Mol Biol; 2005 Jul; 35(7):729-39. PubMed ID: 15894190 [TBL] [Abstract][Full Text] [Related]
17. Variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) in Australia to two Bacillus thuringiensis toxins. Bird LJ; Akhurst RJ J Invertebr Pathol; 2007 Feb; 94(2):84-94. PubMed ID: 17049552 [TBL] [Abstract][Full Text] [Related]
18. Selection and characterisation of an HD1-like Bacillus thuringiensis isolate with a high insecticidal activity against Spodoptera littoralis (Lepidoptera: Noctuidae). Azzouz H; Kebaili-Ghribi J; ben Farhat-Touzri D; Daoud F; Fakhfakh I; Tounsi S; Jaoua S Pest Manag Sci; 2014 Aug; 70(8):1192-201. PubMed ID: 24124020 [TBL] [Abstract][Full Text] [Related]