BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32410355)

  • 21. Ovarian Cancer Differential Interactome and Network Entropy Analysis Reveal New Candidate Biomarkers.
    Ayyildiz D; Gov E; Sinha R; Arga KY
    OMICS; 2017 May; 21(5):285-294. PubMed ID: 28375712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. p-CREB-1 at Ser 133 is a potential marker for breast cancer.
    Xin ZC; Hu HW; Lao ZH; Zhu LQ; Biskup E; Zhang HW
    Eur Rev Med Pharmacol Sci; 2020 Nov; 24(22):11628-11638. PubMed ID: 33275230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence.
    Robertson S; Azizpour H; Smith K; Hartman J
    Transl Res; 2018 Apr; 194():19-35. PubMed ID: 29175265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial Intelligence in Breast Imaging: Potentials and Limitations.
    Mendelson EB
    AJR Am J Roentgenol; 2019 Feb; 212(2):293-299. PubMed ID: 30422715
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Review on Computational Analysis of Big Data in Breast Cancer for Predicting Potential Biomarkers.
    Shaikh N; Bapat S; Karthikeyan M; Vyas R
    Curr Top Med Chem; 2022; 22(21):1793-1810. PubMed ID: 36082858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial Intelligence for Breast MRI in 2008-2018: A Systematic Mapping Review.
    Codari M; Schiaffino S; Sardanelli F; Trimboli RM
    AJR Am J Roentgenol; 2019 Feb; 212(2):280-292. PubMed ID: 30601029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Integrated Systems Biology and Network-Based Approaches to Identify Novel Biomarkers in Breast Cancer Cell Lines Using Gene Expression Data.
    Khan A; Rehman Z; Hashmi HF; Khan AA; Junaid M; Sayaf AM; Ali SS; Hassan FU; Heng W; Wei DQ
    Interdiscip Sci; 2020 Jun; 12(2):155-168. PubMed ID: 32056139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of transcriptomic data and metabolic networks in cancer samples reveals highly significant prognostic power.
    Graudenzi A; Maspero D; Di Filippo M; Gnugnoli M; Isella C; Mauri G; Medico E; Antoniotti M; Damiani C
    J Biomed Inform; 2018 Nov; 87():37-49. PubMed ID: 30244122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A prognostic 11 genes expression model for ovarian cancer.
    Men CD; Liu QN; Ren Q
    J Cell Biochem; 2018 Feb; 119(2):1971-1978. PubMed ID: 28817186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating key genes associated with ovarian cancer by integrating affinity propagation clustering and mutual information network analysis.
    Wang J; Chen C; Li HF; Jiang XL; Zhang L
    Eur Rev Med Pharmacol Sci; 2016 Jun; 20(12):2532-40. PubMed ID: 27383302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New Machine Learning Applications to Accelerate Personalized Medicine in Breast Cancer: Rise of the Support Vector Machines.
    Ozer ME; Sarica PO; Arga KY
    OMICS; 2020 May; 24(5):241-246. PubMed ID: 32228365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Image-based biomarkers for solid tumor quantification.
    Savadjiev P; Chong J; Dohan A; Agnus V; Forghani R; Reinhold C; Gallix B
    Eur Radiol; 2019 Oct; 29(10):5431-5440. PubMed ID: 30963275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial intelligence in the interpretation of breast cancer on MRI.
    Sheth D; Giger ML
    J Magn Reson Imaging; 2020 May; 51(5):1310-1324. PubMed ID: 31343790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Applications of Artificial Intelligence in Breast Imaging.
    Morgan MB; Mates JL
    Radiol Clin North Am; 2021 Jan; 59(1):139-148. PubMed ID: 33222996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Keratin 7 and E-Cadherin Signature Is Highly Predictive of Tubo-Ovarian High-Grade Serous Carcinoma Prognosis.
    Communal L; Roy N; Cahuzac M; Rahimi K; Köbel M; Provencher DM; Mes-Masson AM
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34070214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of cancer biomarkers of prognostic value using specific gene regulatory networks (GRN): a novel role of RAD51AP1 for ovarian and lung cancers.
    Chudasama D; Bo V; Hall M; Anikin V; Jeyaneethi J; Gregory J; Pados G; Tucker A; Harvey A; Pink R; Karteris E
    Carcinogenesis; 2018 Mar; 39(3):407-417. PubMed ID: 29126163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of molecular marker associated with ovarian cancer prognosis using bioinformatics analysis and experiments.
    Zheng MJ; Li X; Hu YX; Dong H; Gou R; Nie X; Liu Q; Ying-Ying H; Liu JJ; Lin B
    J Cell Physiol; 2019 Jul; 234(7):11023-11036. PubMed ID: 30633343
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Personalized Breast Cancer Treatments Using Artificial Intelligence in Radiomics and Pathomics.
    Tran WT; Jerzak K; Lu FI; Klein J; Tabbarah S; Lagree A; Wu T; Rosado-Mendez I; Law E; Saednia K; Sadeghi-Naini A
    J Med Imaging Radiat Sci; 2019 Dec; 50(4 Suppl 2):S32-S41. PubMed ID: 31447230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. miRNA and long non-coding RNA: molecular function and clinical value in breast and ovarian cancers.
    Panoutsopoulou K; Avgeris M; Scorilas A
    Expert Rev Mol Diagn; 2018 Nov; 18(11):963-979. PubMed ID: 30338716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular signatures of ovarian diseases: Insights from network medicine perspective.
    Kori M; Gov E; Arga KY
    Syst Biol Reprod Med; 2016 Aug; 62(4):266-82. PubMed ID: 27341345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.