These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 32410406)
1. CT-Based Radiomics Signature for Preoperative Prediction of Coagulative Necrosis in Clear Cell Renal Cell Carcinoma. Xu K; Liu L; Li W; Sun X; Shen T; Pan F; Jiang Y; Guo Y; Ding L; Zhang M Korean J Radiol; 2020 Jun; 21(6):670-683. PubMed ID: 32410406 [TBL] [Abstract][Full Text] [Related]
2. Radiomics nomogram based on CT radiomics features and clinical factors for prediction of Ki-67 expression and prognosis in clear cell renal cell carcinoma: a two-center study. Li B; Zhu J; Wang Y; Xu Y; Gao Z; Shi H; Nie P; Zhang J; Zhuang Y; Wang Z; Yang G Cancer Imaging; 2024 Aug; 24(1):103. PubMed ID: 39107799 [TBL] [Abstract][Full Text] [Related]
3. Multiphase CT radiomics nomogram for preoperatively predicting the WHO/ISUP nuclear grade of small (< 4 cm) clear cell renal cell carcinoma. Gao Y; Wang X; Zhao X; Zhu C; Li C; Li J; Wu X BMC Cancer; 2023 Oct; 23(1):953. PubMed ID: 37814228 [TBL] [Abstract][Full Text] [Related]
4. Study of radiomics based on dual-energy CT for nuclear grading and T-staging in renal clear cell carcinoma. Wang N; Bing X; Li Y; Yao J; Dai Z; Yu D; Ouyang A Medicine (Baltimore); 2024 Mar; 103(10):e37288. PubMed ID: 38457546 [TBL] [Abstract][Full Text] [Related]
5. Ultrasound contrast-enhanced radiomics model for preoperative prediction of the tumor grade of clear cell renal cell carcinoma: an exploratory study. Luo Y; Liu X; Jia Y; Zhao Q BMC Med Imaging; 2024 Jun; 24(1):135. PubMed ID: 38844837 [TBL] [Abstract][Full Text] [Related]
6. Incremental value of automatically segmented perirenal adipose tissue for pathological grading of clear cell renal cell carcinoma: a multicenter cohort study. Li S; Zhou Z; Gao M; Liao Z; He K; Qu W; Li J; Kamel IR; Chu Q; Zhang Q; Li Z Int J Surg; 2024 Jul; 110(7):4221-4230. PubMed ID: 38573065 [TBL] [Abstract][Full Text] [Related]
7. Validity of a multiphase CT-based radiomics model in predicting the Leibovich risk groups for localized clear cell renal cell carcinoma: an exploratory study. Liu H; Wei Z; Xv Y; Tan H; Liao F; Lv F; Jiang Q; Chen T; Xiao M Insights Imaging; 2023 Oct; 14(1):167. PubMed ID: 37816901 [TBL] [Abstract][Full Text] [Related]
8. Multimodal data integration using machine learning to predict the risk of clear cell renal cancer metastasis: a retrospective multicentre study. Yang Y; Wang J; Ren Q; Yu R; Yuan Z; Jiang Q; Guan S; Tang X; Duan T; Meng X Abdom Radiol (NY); 2024 Jul; 49(7):2311-2324. PubMed ID: 38879708 [TBL] [Abstract][Full Text] [Related]
9. CT-based radiomics model using stability selection for predicting the World Health Organization/International Society of Urological Pathology grade of clear cell renal cell carcinoma. Zhang H; Yin F; Chen M; Qi A; Yang L; Wen G Br J Radiol; 2024 May; 97(1158):1169-1179. PubMed ID: 38688660 [TBL] [Abstract][Full Text] [Related]
10. The Value of Dual-Energy Computed Tomography-Based Radiomics in the Evaluation of Interstitial Fibers of Clear Cell Renal Carcinoma. Bing X; Wang N; Li Y; Sun H; Yao J; Li R; Li Z; Ouyang A Technol Cancer Res Treat; 2024; 23():15330338241235554. PubMed ID: 38404055 [TBL] [Abstract][Full Text] [Related]
11. A CT-based deep learning radiomics nomogram outperforms the existing prognostic models for outcome prediction in clear cell renal cell carcinoma: a multicenter study. Nie P; Yang G; Wang Y; Xu Y; Yan L; Zhang M; Zhao L; Wang N; Zhao X; Li X; Cheng N; Wang Y; Chen C; Wang N; Duan S; Wang X; Wang Z Eur Radiol; 2023 Dec; 33(12):8858-8868. PubMed ID: 37389608 [TBL] [Abstract][Full Text] [Related]
12. Preoperative prediction of the stage, size, grade, and necrosis score in clear cell renal cell carcinoma using MRI-based radiomics. Choi JW; Hu R; Zhao Y; Purkayastha S; Wu J; McGirr AJ; Stavropoulos SW; Silva AC; Soulen MC; Palmer MB; Zhang PJL; Zhu C; Ahn SH; Bai HX Abdom Radiol (NY); 2021 Jun; 46(6):2656-2664. PubMed ID: 33386910 [TBL] [Abstract][Full Text] [Related]
13. Prediction of Fuhrman grade of renal clear cell carcinoma by multimodal MRI radiomics: a retrospective study. Pan L; Chen M; Sun J; Jin P; Ding J; Cai P; Chen J; Xing W Clin Radiol; 2024 Feb; 79(2):e273-e281. PubMed ID: 38065776 [TBL] [Abstract][Full Text] [Related]
14. Enhancing the Efficacy of Radiomics-Based Prediction of Fuhrman Pathological Grading in Renal Clear Cell Carcinoma Using Multilayer Spiral CT Imaging. Liu B; Liu A; Wu Y; Qi Y; Peng Y Arch Esp Urol; 2024 Jul; 77(6):674-680. PubMed ID: 39104236 [TBL] [Abstract][Full Text] [Related]
15. CT-based deep learning radiomics biomarker for programmed cell death ligand 1 expression in non-small cell lung cancer. Xu T; Liu X; Chen Y; Wang S; Jiang C; Gong J BMC Med Imaging; 2024 Jul; 24(1):196. PubMed ID: 39085788 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning-Based Magnetic Resonance Radiomics Analysis for Predicting Low- and High-Grade Clear Cell Renal Cell Carcinoma. Sim KC; Han NY; Cho Y; Sung DJ; Park BJ; Kim MJ; Han YE J Comput Assist Tomogr; 2023 Nov-Dec 01; 47(6):873-881. PubMed ID: 37948361 [TBL] [Abstract][Full Text] [Related]
17. Prediction of Fuhrman nuclear grade for clear cell renal carcinoma by a multi-information fusion model that incorporates CT-based features of tumor and serum tumor associated material. Zhang Y; Sun Z; Ma H; Wang C; Zhang W; Liu J; Li M; Zhang Y; Guo H; Ba X J Cancer Res Clin Oncol; 2023 Nov; 149(17):15855-15865. PubMed ID: 37672076 [TBL] [Abstract][Full Text] [Related]
18. The value of a dual-energy CT Iodine map radiomics model for the prediction of collagen fiber content in the ccRCC tumor microenvironment. Li Z; Wang N; Bing X; Li Y; Yao J; Li R; Ouyang A BMC Med Imaging; 2023 Nov; 23(1):186. PubMed ID: 37968599 [TBL] [Abstract][Full Text] [Related]
19. CT-based radiomics signature for differentiating pyelocaliceal upper urinary tract urothelial carcinoma from infiltrative renal cell carcinoma. Zhai X; Sun P; Yu X; Wang S; Li X; Sun W; Liu X; Tian T; Zhang B Front Oncol; 2023; 13():1244585. PubMed ID: 38304033 [TBL] [Abstract][Full Text] [Related]
20. Clinical T1/2 renal cell carcinoma: multiparametric dynamic contrast-enhanced MRI features-based model for the prediction of individual adverse pathology. Wang K; Guo B; Yao Z; Li G World J Surg Oncol; 2024 Jun; 22(1):145. PubMed ID: 38822338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]