BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32410541)

  • 1. Review of Various Tasks Performed in the Preprocessing Phase of a Diabetic Retinopathy Diagnosis System.
    Ashraf MN; Hussain M; Habib Z
    Curr Med Imaging; 2020; 16(4):397-426. PubMed ID: 32410541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning.
    Alyoubi WL; Abulkhair MF; Shalash WM
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey.
    Asiri N; Hussain M; Al Adel F; Alzaidi N
    Artif Intell Med; 2019 Aug; 99():101701. PubMed ID: 31606116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weakly Supervised Sensitive Heatmap framework to classify and localize diabetic retinopathy lesions.
    Al-Mukhtar M; Morad AH; Albadri M; Islam MDS
    Sci Rep; 2021 Dec; 11(1):23631. PubMed ID: 34880311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic non-proliferative diabetic retinopathy screening system based on color fundus image.
    Xiao Z; Zhang X; Geng L; Zhang F; Wu J; Tong J; Ogunbona PO; Shan C
    Biomed Eng Online; 2017 Oct; 16(1):122. PubMed ID: 29073912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic detection of microaneurysms in retinal fundus images.
    Wu B; Zhu W; Shi F; Zhu S; Chen X
    Comput Med Imaging Graph; 2017 Jan; 55():106-112. PubMed ID: 27595214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmentation of retinal blood vessels by a novel hybrid technique- Principal Component Analysis (PCA) and Contrast Limited Adaptive Histogram Equalization (CLAHE).
    Sidhu RK; Sachdeva J; Katoch D
    Microvasc Res; 2023 Jul; 148():104477. PubMed ID: 36746364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent trends and advances in fundus image analysis: A review.
    Iqbal S; Khan TM; Naveed K; Naqvi SS; Nawaz SJ
    Comput Biol Med; 2022 Dec; 151(Pt A):106277. PubMed ID: 36370579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning.
    Sugeno A; Ishikawa Y; Ohshima T; Muramatsu R
    Comput Biol Med; 2021 Oct; 137():104795. PubMed ID: 34488028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Automated System for the Detection and Classification of Retinal Changes Due to Red Lesions in Longitudinal Fundus Images.
    Adal KM; van Etten PG; Martinez JP; Rouwen KW; Vermeer KA; van Vliet LJ
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1382-1390. PubMed ID: 28922110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
    Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G
    Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new ultra-wide-field fundus dataset to diabetic retinopathy grading using hybrid preprocessing methods.
    Liu H; Teng L; Fan L; Sun Y; Li H
    Comput Biol Med; 2023 May; 157():106750. PubMed ID: 36931202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint Learning of Multi-Level Tasks for Diabetic Retinopathy Grading on Low-Resolution Fundus Images.
    Wang X; Xu M; Zhang J; Jiang L; Li L; He M; Wang N; Liu H; Wang Z
    IEEE J Biomed Health Inform; 2022 May; 26(5):2216-2227. PubMed ID: 34648460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convexity shape constraints for retinal blood vessel segmentation and foveal avascular zone detection.
    Escorcia-Gutierrez J; Torrents-Barrena J; Gamarra M; Romero-Aroca P; Valls A; Puig D
    Comput Biol Med; 2020 Dec; 127():104049. PubMed ID: 33099218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive diagnosis system for early signs and different diabetic retinopathy grades using fundus retinal images based on pathological changes detection.
    AbdelMaksoud E; Barakat S; Elmogy M
    Comput Biol Med; 2020 Nov; 126():104039. PubMed ID: 33068807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diabetic retinopathy detection through novel tetragonal local octa patterns and extreme learning machines.
    Nazir T; Irtaza A; Shabbir Z; Javed A; Akram U; Mahmood MT
    Artif Intell Med; 2019 Aug; 99():101695. PubMed ID: 31606114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis.
    Gegundez-Arias ME; Marin D; Ponte B; Alvarez F; Garrido J; Ortega C; Vasallo MJ; Bravo JM
    Comput Biol Med; 2017 Sep; 88():100-109. PubMed ID: 28711766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME).
    Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z
    Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal image analysis for disease screening through local tetra patterns.
    Porwal P; Pachade S; Kokare M; Giancardo L; Mériaudeau F
    Comput Biol Med; 2018 Nov; 102():200-210. PubMed ID: 30308336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy.
    Akram UM; Khan SA
    J Med Syst; 2012 Oct; 36(5):3151-62. PubMed ID: 22090037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.