BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 32410551)

  • 1. Machine Learning-Based Scoring Functions, Development and Applications with SAnDReS.
    Bitencourt-Ferreira G; Rizzotto C; de Azevedo Junior WF
    Curr Med Chem; 2021; 28(9):1746-1756. PubMed ID: 32410551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAnDReS 2.0: Development of machine-learning models to explore the scoring function space.
    de Azevedo WF; Quiroga R; Villarreal MA; da Silveira NJF; Bitencourt-Ferreira G; da Silva AD; Veit-Acosta M; Oliveira PR; Tutone M; Biziukova N; Poroikov V; Tarasova O; Baud S
    J Comput Chem; 2024 Jun; ():. PubMed ID: 38900052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes.
    Bitencourt-Ferreira G; de Azevedo WF
    Biophys Chem; 2018 Sep; 240():63-69. PubMed ID: 29906639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Machine Learning Techniques to Predict Binding Affinity for Drug Targets: A Study of Cyclin-Dependent Kinase 2.
    Bitencourt-Ferreira G; Duarte da Silva A; Filgueira de Azevedo W
    Curr Med Chem; 2021; 28(2):253-265. PubMed ID: 31729287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taba: A Tool to Analyze the Binding Affinity.
    da Silva AD; Bitencourt-Ferreira G; de Azevedo WF
    J Comput Chem; 2020 Jan; 41(1):69-73. PubMed ID: 31410856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAnDReS a Computational Tool for Statistical Analysis of Docking Results and Development of Scoring Functions.
    Xavier MM; Heck GS; Avila MB; Levin NMB; Pintro VO; Carvalho NL; Azevedo WF
    Comb Chem High Throughput Screen; 2016; 19(10):801-812. PubMed ID: 27686428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning to Predict Binding Affinity.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():251-273. PubMed ID: 31452110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molegro Virtual Docker for Docking.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():149-167. PubMed ID: 31452104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Crystallographic Data for the Development of Machine Learning Models to Predict Protein-Ligand Binding Affinity.
    Veit-Acosta M; de Azevedo Junior WF
    Curr Med Chem; 2021 Oct; 28(34):7006-7022. PubMed ID: 33568025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SAnDReS: A Computational Tool for Docking.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():51-65. PubMed ID: 31452098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized Virtual Screening Workflow: Towards Target-Based Polynomial Scoring Functions for HIV-1 Protease.
    Pintro VO; de Azevedo WF
    Comb Chem High Throughput Screen; 2017; 20(9):820-827. PubMed ID: 29165067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Prediction of Binding Affinity for CDK2-ligand Complexes. A Protein Target for Cancer Drug Discovery.
    Veit-Acosta M; de Azevedo Junior WF
    Curr Med Chem; 2022; 29(14):2438-2455. PubMed ID: 34365938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic Potential Energy in Protein-Drug Complexes.
    Bitencourt-Ferreira G; de Azevedo Junior WF
    Curr Med Chem; 2021; 28(24):4954-4971. PubMed ID: 33593246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.
    de Ávila MB; Xavier MM; Pintro VO; de Azevedo WF
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):305-310. PubMed ID: 29017921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of CDK-targeted scoring functions for prediction of binding affinity.
    Levin NMB; Pintro VO; Bitencourt-Ferreira G; de Mattos BB; de Castro Silvério A; de Azevedo WF
    Biophys Chem; 2018 Apr; 235():1-8. PubMed ID: 29407904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Scoring Function Space.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():275-281. PubMed ID: 31452111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervised Machine Learning Methods Applied to Predict Ligand- Binding Affinity.
    Heck GS; Pintro VO; Pereira RR; de Ávila MB; Levin NMB; de Azevedo WF
    Curr Med Chem; 2017; 24(23):2459-2470. PubMed ID: 28641555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computationally predicting binding affinity in protein-ligand complexes: free energy-based simulations and machine learning-based scoring functions.
    Wang DD; Zhu M; Yan H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ET-score: Improving Protein-ligand Binding Affinity Prediction Based on Distance-weighted Interatomic Contact Features Using Extremely Randomized Trees Algorithm.
    Rayka M; Karimi-Jafari MH; Firouzi R
    Mol Inform; 2021 Aug; 40(8):e2060084. PubMed ID: 34021703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.