BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32410635)

  • 1. Valorization of Gelidium amansii for dual production of D-galactonic acid and 5-hydroxymethyl-2-furancarboxylic acid by chemo-biological approach.
    Liu P; Xie J; Tan H; Zhou F; Zou L; Ouyang J
    Microb Cell Fact; 2020 May; 19(1):104. PubMed ID: 32410635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A versatile Pseudomonas putida KT2440 with new ability: selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid.
    Xu Q; Zheng Z; Zou L; Zhang C; Yang F; Zhou K; Ouyang J
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):67-73. PubMed ID: 31535223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii.
    Ra CH; Jeong GT; Shin MK; Kim SK
    Bioresour Technol; 2013 Jul; 140():421-5. PubMed ID: 23714097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extending galactose-oxidation pathway of Pseudomonas putida for utilization of galactose-rich red macroalgae as sustainable feedstock.
    Zhou F; Liu P; Liu Q; Jin XH; Xiong XY; Zheng ZJ; Ouyang J
    J Biotechnol; 2022 Mar; 348():1-9. PubMed ID: 35227739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved fermentation performance to produce bioethanol from Gelidium amansii using Pichia stipitis adapted to galactose.
    Sukwong P; Ra CH; Sunwoo IY; Tantratian S; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2018 Jul; 41(7):953-960. PubMed ID: 29572665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Third-generation D-lactic acid production using red macroalgae Gelidium amansii by co-fermentation of galactose, glucose and xylose.
    Qiu Z; Wang G; Shao W; Cao L; Tan H; Shao S; Jin C; Xia J; He J; Liu X; He A; Han X; Xu J
    Bioresour Technol; 2024 May; 399():130631. PubMed ID: 38554760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detoxification of Hydrolysates of the Red Seaweed Gelidium amansii for Improved Bioethanol Production.
    Nguyen TH; Sunwoo IY; Jeong GT; Kim SK
    Appl Biochem Biotechnol; 2019 Aug; 188(4):977-990. PubMed ID: 30761446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of 2,3-Butanediol Production from Red Seaweed
    Ra CH; Seo JH; Jeong GT; Kim SK
    J Microbiol Biotechnol; 2020 Dec; 30(12):1912-1918. PubMed ID: 32958731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a thermotolerant aryl-alcohol oxidase from Moesziomyces antarcticus oxidizing 5-hydroxymethyl-2-furancarboxylic acid.
    Lappe A; Jankowski N; Albrecht A; Koschorreck K
    Appl Microbiol Biotechnol; 2021 Nov; 105(21-22):8313-8327. PubMed ID: 34643786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control.
    Ra CH; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2017 Mar; 40(3):403-411. PubMed ID: 27878375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of sugars and levulinic acid from marine biomass Gelidium amansii.
    Jeong GT; Park DH
    Appl Biochem Biotechnol; 2010 May; 161(1-8):41-52. PubMed ID: 19830598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Butyric acid production from red algae by a newly isolated Clostridium sp. S1.
    Lee KM; Choi O; Kim KY; Woo HM; Kim Y; Han SO; Sang BI; Um Y
    Biotechnol Lett; 2015 Sep; 37(9):1837-44. PubMed ID: 26026964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation.
    Park JH; Hong JY; Jang HC; Oh SG; Kim SH; Yoon JJ; Kim YJ
    Bioresour Technol; 2012 Mar; 108():83-8. PubMed ID: 22261657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption optimization, characterization, immobilization and application of Gelidium amansii biomass for complete Pb
    El-Naggar NE; Hamouda RA; Mousa IE; Abdel-Hamid MS; Rabei NH
    Sci Rep; 2018 Sep; 8(1):13456. PubMed ID: 30194341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study on the chemo-enzymatic upgrading of renewable biomass to 5-Hydroxymethylfurfural.
    Saikia K; Rathankumar AK; Ramachandran K; Sridharan H; Bohra P; Bharadwaj N; Vyas A; Kumar VV
    J Air Waste Manag Assoc; 2020 Dec; 70(12):1218-1226. PubMed ID: 31994981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient synthesis of 5-hydroxymethyl-2-furancarboxylic acid by Escherichia coli overexpressing aldehyde dehydrogenases.
    Zhang XY; Ou XY; Fu YJ; Zong MH; Li N
    J Biotechnol; 2020 Jan; 307():125-130. PubMed ID: 31726082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient approach for bioethanol production from red seaweed Gelidium amansii.
    Kim HM; Wi SG; Jung S; Song Y; Bae HJ
    Bioresour Technol; 2015 Jan; 175():128-34. PubMed ID: 25459813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii.
    Jeong TS; Choi CH; Lee JY; Oh KK
    Bioresour Technol; 2012 Jul; 116():435-40. PubMed ID: 22522017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by a Syntrophic Consortium of Engineered Synechococcus elongatus and Pseudomonas putida.
    Lin TY; Wen RC; Shen CR; Tsai SL
    Biotechnol J; 2020 Jun; 15(6):e1900357. PubMed ID: 32181597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sunlight-Driven Highly Selective Catalytic Oxidation of 5-Hydroxymethylfurfural Towards Tunable Products.
    Xia T; Gong W; Chen Y; Duan M; Ma J; Cui X; Dai Y; Gao C; Xiong Y
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202204225. PubMed ID: 35502743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.