These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Searching for efficient Markov chain Monte Carlo proposal kernels. Yang Z; Rodríguez CE Proc Natl Acad Sci U S A; 2013 Nov; 110(48):19307-12. PubMed ID: 24218600 [TBL] [Abstract][Full Text] [Related]
3. Adaptive Mixture Modelling Metropolis Methods for Bayesian Analysis of Non-linear State-Space Models. Niemi J; West M J Comput Graph Stat; 2010 Jun; 19(2):260-280. PubMed ID: 20563281 [TBL] [Abstract][Full Text] [Related]
4. Adaptation of the Independent Metropolis-Hastings Sampler with Normalizing Flow Proposals. Brofos JA; Gabrié M; Brubaker MA; Lederman RR Proc Mach Learn Res; 2022 Mar; 151():5949-5986. PubMed ID: 36789101 [TBL] [Abstract][Full Text] [Related]
5. A general construction for parallelizing Metropolis-Hastings algorithms. Calderhead B Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17408-13. PubMed ID: 25422442 [TBL] [Abstract][Full Text] [Related]
6. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology. Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078 [TBL] [Abstract][Full Text] [Related]
7. BAYESIAN INFERENCE OF STOCHASTIC REACTION NETWORKS USING MULTIFIDELITY SEQUENTIAL TEMPERED MARKOV CHAIN MONTE CARLO. Catanach TA; Vo HD; Munsky B Int J Uncertain Quantif; 2020; 10(6):515-542. PubMed ID: 34007522 [TBL] [Abstract][Full Text] [Related]
8. On free energy barriers in Gaussian priors and failure of cold start MCMC for high-dimensional unimodal distributions. Bandeira AS; Maillard A; Nickl R; Wang S Philos Trans A Math Phys Eng Sci; 2023 May; 381(2247):20220150. PubMed ID: 36970818 [TBL] [Abstract][Full Text] [Related]
9. A Semiparametric Bayesian Approach to Heterogeneous Spatial Autoregressive Models. Liu T; Xu D; Ke S Entropy (Basel); 2024 Jun; 26(6):. PubMed ID: 38920507 [TBL] [Abstract][Full Text] [Related]
10. A Neural Network MCMC Sampler That Maximizes Proposal Entropy. Li Z; Chen Y; Sommer FT Entropy (Basel); 2021 Feb; 23(3):. PubMed ID: 33668743 [TBL] [Abstract][Full Text] [Related]
11. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants. Liang F; Jin IH Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562 [TBL] [Abstract][Full Text] [Related]
12. Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations. Chaspari T; Tsiartas A; Tsilifis P; Narayanan S IEEE Trans Signal Process; 2016 Jun; 64(12):3077-3092. PubMed ID: 28649173 [TBL] [Abstract][Full Text] [Related]
13. An Auxiliary Variable Method for Markov Chain Monte Carlo Algorithms in High Dimension. Marnissi Y; Chouzenoux E; Benazza-Benyahia A; Pesquet JC Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265201 [TBL] [Abstract][Full Text] [Related]
15. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies. Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284 [TBL] [Abstract][Full Text] [Related]
17. An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations. Farr WM; Mandel I; Stevens D R Soc Open Sci; 2015 Jun; 2(6):150030. PubMed ID: 26543580 [TBL] [Abstract][Full Text] [Related]
18. Semiparametric Mixed-Effects Ordinary Differential Equation Models with Heavy-Tailed Distributions. Liu B; Wang L; Nie Y; Cao J J Agric Biol Environ Stat; 2021; 26(3):428-445. PubMed ID: 33840991 [TBL] [Abstract][Full Text] [Related]
19. Bayesian semiparametric intensity estimation for inhomogeneous spatial point processes. Yue YR; Loh JM Biometrics; 2011 Sep; 67(3):937-46. PubMed ID: 21175553 [TBL] [Abstract][Full Text] [Related]