BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32410930)

  • 1. Diagnosis of Autism Spectrum Disorder Using Central-Moment Features From Low- and High-Order Dynamic Resting-State Functional Connectivity Networks.
    Zhao F; Chen Z; Rekik I; Lee SW; Shen D
    Front Neurosci; 2020; 14():258. PubMed ID: 32410930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing Multi-View High-Order Functional Connectivity Networks for Diagnosis of Autism Spectrum Disorder.
    Zhao F; Zhang X; Thung KH; Mao N; Lee SW; Shen D
    IEEE Trans Biomed Eng; 2022 Mar; 69(3):1237-1250. PubMed ID: 34705632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing high-order functional connectivity network based on central moment features for diagnosis of autism spectrum disorder.
    Xie Q; Zhang X; Rekik I; Chen X; Mao N; Shen D; Zhao F
    PeerJ; 2021; 9():e11692. PubMed ID: 34268010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnosis of Autism Spectrum Disorders Using Multi-Level High-Order Functional Networks Derived From Resting-State Functional MRI.
    Zhao F; Zhang H; Rekik I; An Z; Shen D
    Front Hum Neurosci; 2018; 12():184. PubMed ID: 29867410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning to Fuse Multiple Brain Functional Networks for Automated Autism Identification.
    Zhang C; Ma Y; Qiao L; Zhang L; Liu M
    Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Scale Graph Representation Learning for Autism Identification With Functional MRI.
    Chu Y; Wang G; Cao L; Qiao L; Liu M
    Front Neuroinform; 2021; 15():802305. PubMed ID: 35095453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing high-order functional networks based on hypergraph for diagnosis of autism spectrum disorders.
    Yang J; Wang F; Li Z; Yang Z; Dong X; Han Q
    Front Neurosci; 2023; 17():1257982. PubMed ID: 37719159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid High-order Functional Connectivity Networks Using Resting-state Functional MRI for Mild Cognitive Impairment Diagnosis.
    Zhang Y; Zhang H; Chen X; Lee SW; Shen D
    Sci Rep; 2017 Jul; 7(1):6530. PubMed ID: 28747782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnosis of early Alzheimer's disease based on dynamic high order networks.
    Lei B; Yu S; Zhao X; Frangi AF; Tan EL; Elazab A; Wang T; Wang S
    Brain Imaging Behav; 2021 Feb; 15(1):276-287. PubMed ID: 32789620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Sparsity and Modularity of High-Order Functional Connectivity Networks for MCI and ASD Identification.
    Zhou Y; Zhang L; Teng S; Qiao L; Shen D
    Front Neurosci; 2018; 12():959. PubMed ID: 30618582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariate graph learning for detecting aberrant connectivity of dynamic brain networks in autism.
    Aggarwal P; Gupta A
    Med Image Anal; 2019 Aug; 56():11-25. PubMed ID: 31150935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Synchronization Estimation of Low- and High-Order Functional Connectivity Based on Sub-Network Division for the Diagnosis of Autism Spectrum Disorder.
    Zhao F; Han Z; Cheng D; Mao N; Chen X; Li Y; Fan D; Liu P
    Front Neurosci; 2021; 15():810431. PubMed ID: 35221892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Scale Dynamic Graph Learning for Brain Disorder Detection With Functional MRI.
    Ma Y; Wang Q; Cao L; Li L; Zhang C; Qiao L; Liu M
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3501-3512. PubMed ID: 37643109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Unit-Based Personalized Fingerprint Feature Selection Strategy for Dynamic Functional Connectivity Networks.
    Zhao F; Chen Z; Rekik I; Liu P; Mao N; Lee SW; Shen D
    Front Neurosci; 2021; 15():651574. PubMed ID: 33828457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised Manifold Learning Using High-Order Morphological Brain Networks Derived From T1-w MRI for Autism Diagnosis.
    Soussia M; Rekik I
    Front Neuroinform; 2018; 12():70. PubMed ID: 30459585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing weighted correlation kernels in convolutional neural networks for functional connectivity based brain disease diagnosis.
    Jie B; Liu M; Lian C; Shi F; Shen D
    Med Image Anal; 2020 Jul; 63():101709. PubMed ID: 32417715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic functional connectivity analysis reveals decreased variability of the default-mode network in developing autistic brain.
    He C; Chen Y; Jian T; Chen H; Guo X; Wang J; Wu L; Chen H; Duan X
    Autism Res; 2018 Nov; 11(11):1479-1493. PubMed ID: 30270547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating sparse functional connectivity networks via hyperparameter-free learning model.
    Sun L; Xue Y; Zhang Y; Qiao L; Zhang L; Liu M
    Artif Intell Med; 2021 Jan; 111():102004. PubMed ID: 33461688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal-spatial dynamic functional connectivity analysis in schizophrenia classification.
    Pan C; Yu H; Fei X; Zheng X; Yu R
    Front Neurosci; 2022; 16():965937. PubMed ID: 36061606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient states of network connectivity are atypical in autism: A dynamic functional connectivity study.
    Mash LE; Linke AC; Olson LA; Fishman I; Liu TT; Müller RA
    Hum Brain Mapp; 2019 Jun; 40(8):2377-2389. PubMed ID: 30681228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.