BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 32411160)

  • 1. RNA-Spray-Mediated Silencing of
    Werner BT; Gaffar FY; Schuemann J; Biedenkopf D; Koch AM
    Front Plant Sci; 2020; 11():476. PubMed ID: 32411160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the
    Höfle L; Biedenkopf D; Werner BT; Shrestha A; Jelonek L; Koch A
    RNA Biol; 2020 Apr; 17(4):463-473. PubMed ID: 31814508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular vesicles isolated from dsRNA-sprayed barley plants exhibit no growth inhibition or gene silencing in Fusarium graminearum.
    Schlemmer T; Lischka R; Wegner L; Ehlers K; Biedenkopf D; Koch A
    Fungal Biol Biotechnol; 2022 Jul; 9(1):14. PubMed ID: 35836276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIGS vs HIGS: a study on the efficacy of two dsRNA delivery strategies to silence Fusarium FgCYP51 genes in infected host and non-host plants.
    Koch A; Höfle L; Werner BT; Imani J; Schmidt A; Jelonek L; Kogel KH
    Mol Plant Pathol; 2019 Dec; 20(12):1636-1644. PubMed ID: 31603277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different Components of the RNA Interference Machinery Are Required for Conidiation, Ascosporogenesis, Virulence, Deoxynivalenol Production, and Fungal Inhibition by Exogenous Double-Stranded RNA in the Head Blight Pathogen
    Gaffar FY; Imani J; Karlovsky P; Koch A; Kogel KH
    Front Microbiol; 2019; 10():1662. PubMed ID: 31616385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing.
    Song XS; Gu KX; Duan XX; Xiao XM; Hou YP; Duan YB; Wang JX; Yu N; Zhou MG
    Mol Plant Pathol; 2018 Dec; 19(12):2543-2560. PubMed ID: 30027625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spray-Induced Silencing of Pathogenicity Gene
    Sarkar A; Roy-Barman S
    Front Plant Sci; 2021; 12():733129. PubMed ID: 34899771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and Characterization of Barley (
    Schlemmer T; Barth P; Weipert L; Preußer C; Hardt M; Möbus A; Busche T; Koch A
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery.
    Koch A; Biedenkopf D; Furch A; Weber L; Rossbach O; Abdellatef E; Linicus L; Johannsmeier J; Jelonek L; Goesmann A; Cardoza V; McMillan J; Mentzel T; Kogel KH
    PLoS Pathog; 2016 Oct; 12(10):e1005901. PubMed ID: 27737019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycovirus-encoded suppressors of RNA silencing: Possible allies or enemies in the use of RNAi to control fungal disease in crops.
    Rodriguez Coy L; Plummer KM; Khalifa ME; MacDiarmid RM
    Front Fungal Biol; 2022; 3():965781. PubMed ID: 37746227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spray-Induced Gene Silencing to Study Gene Function in Phytophthora.
    Sundararajan P; Kalyandurg PB; Liu Q; Chawade A; Whisson SC; Vetukuri RR
    Methods Mol Biol; 2022; 2536():459-474. PubMed ID: 35819621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Essential Genes for the Establishment of Spray-Induced Gene Silencing-Based Disease Control in
    Kim S; Lee R; Jeon H; Lee N; Park J; Moon H; Shin J; Min K; Kim JE; Yang JW; Son H
    J Agric Food Chem; 2023 Dec; 71(49):19302-19311. PubMed ID: 38018120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesizing Fluorescently Labeled dsRNAs and sRNAs to Visualize Fungal RNA Uptake.
    Hamby R; Wang M; Qiao L; Jin H
    Methods Mol Biol; 2020; 2166():215-225. PubMed ID: 32710411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusarium graminearum DICER-like-dependent sRNAs are required for the suppression of host immune genes and full virulence.
    Werner BT; Koch A; Šečić E; Engelhardt J; Jelonek L; Steinbrenner J; Kogel KH
    PLoS One; 2021; 16(8):e0252365. PubMed ID: 34351929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Double-Strand RNAs Targeting Chitin Synthase, Glucan Synthase, and Protein Kinase Reduces
    Yang P; Yi SY; Nian JN; Yuan QS; He WJ; Zhang JB; Liao YC
    Front Microbiol; 2021; 12():660976. PubMed ID: 34305830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spray-Induced Gene Silencing: a Powerful Innovative Strategy for Crop Protection.
    Wang M; Jin H
    Trends Microbiol; 2017 Jan; 25(1):4-6. PubMed ID: 27923542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. dsRNA Uptake in Plant Pests and Pathogens: Insights into RNAi-Based Insect and Fungal Control Technology.
    Wytinck N; Manchur CL; Li VH; Whyard S; Belmonte MF
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33339102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-Based Control of Fungal Pathogens in Plants.
    Mann CWG; Sawyer A; Gardiner DM; Mitter N; Carroll BJ; Eamens AL
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-Stranded RNAs (dsRNAs) as a Sustainable Tool against Gray Mold (
    Nerva L; Sandrini M; Gambino G; Chitarra W
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 32013165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications.
    Hoang BTL; Fletcher SJ; Brosnan CA; Ghodke AB; Manzie N; Mitter N
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.