These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 32411160)

  • 41. Cross-Kingdom Small RNAs Among Animals, Plants and Microbes.
    Zeng J; Gupta VK; Jiang Y; Yang B; Gong L; Zhu H
    Cells; 2019 Apr; 8(4):. PubMed ID: 31018602
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RNA Interference Strategies for Future Management of Plant Pathogenic Fungi: Prospects and Challenges.
    Gebremichael DE; Haile ZM; Negrini F; Sabbadini S; Capriotti L; Mezzetti B; Baraldi E
    Plants (Basel); 2021 Mar; 10(4):. PubMed ID: 33805521
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Double-Stranded RNA Technology to Control Insect Pests: Current Status and Challenges.
    Christiaens O; Whyard S; Vélez AM; Smagghe G
    Front Plant Sci; 2020; 11():451. PubMed ID: 32373146
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco.
    Konakalla NC; Kaldis A; Berbati M; Masarapu H; Voloudakis AE
    Planta; 2016 Oct; 244(4):961-9. PubMed ID: 27456838
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent progress on gene silencing/suppression by virus-derived small interfering RNAs in rice viruses especially Rice grassy stunt virus.
    Arif M; Islam SU; Adnan M; Anwar M; Ali H; Wu Z
    Microb Pathog; 2018 Dec; 125():210-218. PubMed ID: 30243549
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing RNAi by using concatemerized double-stranded RNA.
    Sharath Chandra G; Asokan R; Manamohan M; Krishna Kumar N
    Pest Manag Sci; 2019 Feb; 75(2):506-514. PubMed ID: 30039906
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gene Mining for Conserved, Non-Annotated Proteins of
    Ruiz-Jiménez L; Polonio Á; Vielba-Fernández A; Pérez-García A; Fernández-Ortuño D
    J Fungi (Basel); 2021 Sep; 7(9):. PubMed ID: 34575773
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-Wide Identification of Dicer-Like, Argonaute, and RNA-Dependent RNA Polymerase Gene Families in
    Cao JY; Xu YP; Li W; Li SS; Rahman H; Cai XZ
    Front Plant Sci; 2016; 7():1614. PubMed ID: 27833632
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing.
    Mérai Z; Kerényi Z; Kertész S; Magna M; Lakatos L; Silhavy D
    J Virol; 2006 Jun; 80(12):5747-56. PubMed ID: 16731914
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential transcriptomic responses to Fusarium graminearum infection in two barley quantitative trait loci associated with Fusarium head blight resistance.
    Huang Y; Li L; Smith KP; Muehlbauer GJ
    BMC Genomics; 2016 May; 17():387. PubMed ID: 27206761
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing.
    Komiya R
    J Plant Res; 2017 Jan; 130(1):17-23. PubMed ID: 27900550
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Small RNA-based plant protection against diseases.
    Bilir Ö; Göl D; Hong Y; McDowell JM; Tör M
    Front Plant Sci; 2022; 13():951097. PubMed ID: 36061762
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Minicell-based fungal RNAi delivery for sustainable crop protection.
    Islam MT; Davis Z; Chen L; Englaender J; Zomorodi S; Frank J; Bartlett K; Somers E; Carballo SM; Kester M; Shakeel A; Pourtaheri P; Sherif SM
    Microb Biotechnol; 2021 Jul; 14(4):1847-1856. PubMed ID: 33624940
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of Exogenous dsRNAs-induced RNAi in Agriculture: Challenges and Triumphs.
    Das PR; Sherif SM
    Front Plant Sci; 2020; 11():946. PubMed ID: 32670336
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Small RNAs--the secret agents in the plant-pathogen interactions.
    Weiberg A; Jin H
    Curr Opin Plant Biol; 2015 Aug; 26():87-94. PubMed ID: 26123395
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Complexity of dsRNA mycovirus isolated from Fusarium graminearum.
    Chu YM; Lim WS; Yea SJ; Cho JD; Lee YW; Kim KH
    Virus Genes; 2004 Jan; 28(1):135-43. PubMed ID: 14739658
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plant dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis.
    Fukudome A; Fukuhara T
    J Plant Res; 2017 Jan; 130(1):33-44. PubMed ID: 27885504
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro antifungal activity of synthetic dsRNA molecules against two pathogens of banana, Fusarium oxysporum f. sp. cubense and Mycosphaerella fijiensis.
    Mumbanza FM; Kiggundu A; Tusiime G; Tushemereirwe WK; Niblett C; Bailey A
    Pest Manag Sci; 2013 Oct; 69(10):1155-62. PubMed ID: 23471899
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of an RNA Nanostructure for Effective
    Wu F; Yan L; Zhao X; Lv C; Jin W
    J Fungi (Basel); 2024 Jul; 10(7):. PubMed ID: 39057368
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Management of Pest Insects and Plant Diseases by Non-Transformative RNAi.
    Cagliari D; Dias NP; Galdeano DM; Dos Santos EÁ; Smagghe G; Zotti MJ
    Front Plant Sci; 2019; 10():1319. PubMed ID: 31708946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.