These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32411180)

  • 21. Range-limited centrality measures in complex networks.
    Ercsey-Ravasz M; Lichtenwalter RN; Chawla NV; Toroczkai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066103. PubMed ID: 23005158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Efficient and Easy-to-Use Network-Based Integrative Method of Multi-Omics Data for Cancer Genes Discovery.
    Wei T; Fa B; Luo C; Johnston L; Zhang Y; Yu Z
    Front Genet; 2020; 11():613033. PubMed ID: 33488678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrating Protein-Protein Interaction Networks and Somatic Mutation Data to Detect Driver Modules in Pan-Cancer.
    Wu H; Chen Z; Wu Y; Zhang H; Liu Q
    Interdiscip Sci; 2022 Mar; 14(1):151-167. PubMed ID: 34491536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MiRNA-gene network embedding for predicting cancer driver genes.
    Peng W; Wu R; Dai W; Ning Y; Fu X; Liu L; Liu L
    Brief Funct Genomics; 2023 Jul; 22(4):341-350. PubMed ID: 36752023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A rice protein interaction network reveals high centrality nodes and candidate pathogen effector targets.
    Mishra B; Kumar N; Shahid Mukhtar M
    Comput Struct Biotechnol J; 2022; 20():2001-2012. PubMed ID: 35521542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Percolation centrality: quantifying graph-theoretic impact of nodes during percolation in networks.
    Piraveenan M; Prokopenko M; Hossain L
    PLoS One; 2013; 8(1):e53095. PubMed ID: 23349699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Random Walks on Networks with Centrality-Based Stochastic Resetting.
    Zelenkovski K; Sandev T; Metzler R; Kocarev L; Basnarkov L
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Centrality measures and thermodynamic formalism for complex networks.
    Delvenne JC; Libert AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046117. PubMed ID: 21599250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal pinning controllability of complex networks: dependence on network structure.
    Jalili M; Askari Sichani O; Yu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012803. PubMed ID: 25679653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-stage-vote ensemble framework based on integration of mutation data and gene interaction network for uncovering driver genes.
    Kan Y; Jiang L; Guo Y; Tang J; Guo F
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34791034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards a methodology for validation of centrality measures in complex networks.
    Batool K; Niazi MA
    PLoS One; 2014; 9(4):e90283. PubMed ID: 24709999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data.
    Jia P; Zhao Z
    PLoS Comput Biol; 2014 Feb; 10(2):e1003460. PubMed ID: 24516372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seed-weighted random walk ranking for cancer biomarker prioritisation: a case study in leukaemia.
    Huan T; Wu X; Bai Z; Chen JY
    Int J Data Min Bioinform; 2014; 9(2):135-48. PubMed ID: 24864375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Novel Entropy-Based Centrality Approach for Identifying Vital Nodes in Weighted Networks.
    Qiao T; Shan W; Yu G; Liu C
    Entropy (Basel); 2018 Apr; 20(4):. PubMed ID: 33265352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Graph Convolution Network-Based Model for Prioritizing Personalized Cancer Driver Genes of Individual Patients.
    Peng W; Yu P; Dai W; Fu X; Liu L; Pan Y
    IEEE Trans Nanobioscience; 2023 Oct; 22(4):744-754. PubMed ID: 37195839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction of Parkinson's disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes.
    George G; Valiya Parambath S; Lokappa SB; Varkey J
    Gene; 2019 May; 697():67-77. PubMed ID: 30776463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying Breast Cancer-Related Genes Based on a Novel Computational Framework Involving KEGG Pathways and PPI Network Modularity.
    Zhang Y; Xiang J; Tang L; Li J; Lu Q; Tian G; He BS; Yang J
    Front Genet; 2021; 12():596794. PubMed ID: 34484285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CUFID-query: accurate network querying through random walk based network flow estimation.
    Jeong H; Qian X; Yoon BJ
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):500. PubMed ID: 29297279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks.
    Kitsak M; Havlin S; Paul G; Riccaboni M; Pammolli F; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056115. PubMed ID: 17677141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drug repositioning based on individual bi-random walks on a heterogeneous network.
    Wang Y; Guo M; Ren Y; Jia L; Yu G
    BMC Bioinformatics; 2019 Dec; 20(Suppl 15):547. PubMed ID: 31874623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.