These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 32411186)

  • 41. Proline accumulation protects Saccharomyces cerevisiae cells in stationary phase from ethanol stress by reducing reactive oxygen species levels.
    Takagi H; Taguchi J; Kaino T
    Yeast; 2016 Aug; 33(8):355-63. PubMed ID: 26833688
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proline transport and stress tolerance of ammonia-insensitive mutants of the PUT4-encoded proline-specific permease in yeast.
    Poole K; E Walker M; Warren T; Gardner J; McBryde C; de Barros Lopes M; Jiranek V
    J Gen Appl Microbiol; 2009 Dec; 55(6):427-39. PubMed ID: 20118607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Specific serine residues of Msn2/4 are responsible for regulation of alcohol fermentation rates and ethanol resistance.
    Vamvakas SS; Kapolos J; Farmakis L; Genneos F; Damianaki ME; Chouli X; Vardakou A; Liosi S; Stavropoulou E; Leivaditi E; Fragki M; Labrakou E; Gashi EG; Demoli D
    Biotechnol Prog; 2019 Mar; 35(2):e2759. PubMed ID: 30507007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression.
    Jauniaux JC; Grenson M
    Eur J Biochem; 1990 May; 190(1):39-44. PubMed ID: 2194797
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Amino acid residues important for substrate specificity of the amino acid permeases Can1p and Gnp1p in Saccharomyces cerevisiae.
    Regenberg B; Kielland-Brandt MC
    Yeast; 2001 Nov; 18(15):1429-40. PubMed ID: 11746604
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Light-Stress Response Mediated by the Transcription Factor
    Camponeschi I; Montanari A; Beccaccioli M; Reverberi M; Mazzoni C; Bianchi MM
    Front Microbiol; 2021; 12():705012. PubMed ID: 34335537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor.
    Görner W; Durchschlag E; Wolf J; Brown EL; Ammerer G; Ruis H; Schüller C
    EMBO J; 2002 Jan; 21(1-2):135-44. PubMed ID: 11782433
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance.
    Shima J; Takagi H
    Biotechnol Appl Biochem; 2009 May; 53(Pt 3):155-64. PubMed ID: 19476439
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications.
    Takagi H
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):211-23. PubMed ID: 18802692
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors.
    Seymour IJ; Piper PW
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():231-239. PubMed ID: 10206703
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae.
    Fabrizio P; Pletcher SD; Minois N; Vaupel JW; Longo VD
    FEBS Lett; 2004 Jan; 557(1-3):136-42. PubMed ID: 14741356
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cross-talks of sensory transcription networks in response to various environmental stresses.
    Chen T; Li F; Chen BS
    Interdiscip Sci; 2009 Mar; 1(1):46-54. PubMed ID: 20640818
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.
    Tsolmonbaatar A; Hashida K; Sugimoto Y; Watanabe D; Furukawa S; Takagi H
    Int J Food Microbiol; 2016 Dec; 238():233-240. PubMed ID: 27672730
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae.
    Boy-Marcotte E; Perrot M; Bussereau F; Boucherie H; Jacquet M
    J Bacteriol; 1998 Mar; 180(5):1044-52. PubMed ID: 9495741
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing.
    Watanabe M; Watanabe D; Akao T; Shimoi H
    J Biosci Bioeng; 2009 May; 107(5):516-8. PubMed ID: 19393550
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Overexpression of Bop3 confers resistance to methylmercury in Saccharomyces cerevisiae through interaction with other proteins such as Fkh1, Rts1, and Msn2.
    Hwang GW; Furuoya Y; Hiroshima A; Furuchi T; Naganuma A
    Biochem Biophys Res Commun; 2005 May; 330(2):378-85. PubMed ID: 15796894
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A C-terminal di-leucine motif and nearby sequences are required for NH4(+)-induced inactivation and degradation of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae.
    Hein C; André B
    Mol Microbiol; 1997 May; 24(3):607-16. PubMed ID: 9179853
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vacuolar amino acid transporters upregulated by exogenous proline and involved in cellular localization of proline in Saccharomyces cerevisiae.
    Nishida I; Watanabe D; Tsolmonbaatar A; Kaino T; Ohtsu I; Takagi H
    J Gen Appl Microbiol; 2016 Jul; 62(3):132-9. PubMed ID: 27246536
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carbon and nitrogen sources regulate delta-aminolevulinic acid and gamma-aminobutyric acid transport in Saccharomyces cerevisiae.
    Correa García S; Bermúdez Moretti M; Ramos E; Batlle A
    Int J Biochem Cell Biol; 1997; 29(8-9):1097-101. PubMed ID: 9416005
    [TBL] [Abstract][Full Text] [Related]  

  • 60. UGA4 gene expression in Saccharomyces cerevisiae depends on cell growth conditions.
    Bermúdez Moretti M; Correa García S; Batlle A
    Cell Mol Biol (Noisy-le-grand); 1998 Jun; 44(4):585-90. PubMed ID: 9678893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.