These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32411585)

  • 1. DsRNA induction of microRNA-155 disrupt tight junction barrier by modulating claudins.
    Hiranuma H; Gon Y; Maruoka S; Kozu Y; Yamada S; Fukuda A; Kurosawa Y; Tetsuo S; Nakagawa Y; Mizumura K
    Asia Pac Allergy; 2020 Apr; 10(2):e20. PubMed ID: 32411585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyinosinic:polycytidylic acid induces protein kinase D-dependent disassembly of apical junctions and barrier dysfunction in airway epithelial cells.
    Rezaee F; Meednu N; Emo JA; Saatian B; Chapman TJ; Naydenov NG; De Benedetto A; Beck LA; Ivanov AI; Georas SN
    J Allergy Clin Immunol; 2011 Dec; 128(6):1216-1224.e11. PubMed ID: 21996340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(I:C) induced microRNA-146a regulates epithelial barrier and secretion of proinflammatory cytokines in human nasal epithelial cells.
    Miyata R; Kakuki T; Nomura K; Ohkuni T; Ogasawara N; Takano K; Konno T; Kohno T; Sawada N; Himi T; Kojima T
    Eur J Pharmacol; 2015 Aug; 761():375-82. PubMed ID: 25959385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strengthening of the barrier function in human telomerase reverse transcription (hTERT) immortalized corneal and conjunctival epithelium by double-stranded RNA.
    Ban Y; Yoshida Y; Aziza Y; Kinoshita S; Sotozono C
    Exp Eye Res; 2023 Feb; 227():109357. PubMed ID: 36572167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia-inducible microRNA-155 negatively regulates epithelial barrier in eosinophilic esophagitis by suppressing tight junction claudin-7.
    Markey GE; Ryan S; Furuta GT; Menard-Katcher C; McNamee EN; Masterson JC
    FASEB J; 2024 Jan; 38(1):e23358. PubMed ID: 38050671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase D promotes airway epithelial barrier dysfunction and permeability through down-regulation of claudin-1.
    Gan H; Wang G; Hao Q; Wang QJ; Tang H
    J Biol Chem; 2013 Dec; 288(52):37343-54. PubMed ID: 24265314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IL-22 Increases Permeability of Intestinal Epithelial Tight Junctions by Enhancing Claudin-2 Expression.
    Wang Y; Mumm JB; Herbst R; Kolbeck R; Wang Y
    J Immunol; 2017 Nov; 199(9):3316-3325. PubMed ID: 28939759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alcohol increases the permeability of airway epithelial tight junctions in Beas-2B and NHBE cells.
    Simet SM; Wyatt TA; DeVasure J; Yanov D; Allen-Gipson D; Sisson JH
    Alcohol Clin Exp Res; 2012 Mar; 36(3):432-42. PubMed ID: 21950588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nod-like receptor X-1 is required for rhinovirus-induced barrier dysfunction in airway epithelial cells.
    Unger BL; Ganesan S; Comstock AT; Faris AN; Hershenson MB; Sajjan US
    J Virol; 2014 Apr; 88(7):3705-18. PubMed ID: 24429360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Claudin-3 and claudin-19 partially restore native phenotype to ARPE-19 cells via effects on tight junctions and gene expression.
    Peng S; Wang SB; Singh D; Zhao PY; Davis K; Chen B; Adelman RA; Rizzolo LJ
    Exp Eye Res; 2016 Oct; 151():179-89. PubMed ID: 27593915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NDRG1 is important to maintain the integrity of airway epithelial barrier through claudin-9 expression.
    Gon Y; Maruoka S; Kishi H; Kozu Y; Kazumichi K; Nomura Y; Takeshita I; Oshima T; Hashimoto S
    Cell Biol Int; 2017 Jul; 41(7):716-725. PubMed ID: 28191699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells.
    Saatian B; Rezaee F; Desando S; Emo J; Chapman T; Knowlden S; Georas SN
    Tissue Barriers; 2013 Apr; 1(2):e24333. PubMed ID: 24665390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperoxia induces paracellular leak and alters claudin expression by neonatal alveolar epithelial cells.
    Vyas-Read S; Vance RJ; Wang W; Colvocoresses-Dodds J; Brown LA; Koval M
    Pediatr Pulmonol; 2018 Jan; 53(1):17-27. PubMed ID: 29168340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Glucose Reduces the Paracellular Permeability of the Submandibular Gland Epithelium via the MiR-22-3p/Sp1/Claudin Pathway.
    Huang Y; Liu HM; Mao QY; Cong X; Zhang Y; Lee SW; Park K; Wu LL; Xiang RL; Yu GY
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Claudin expression in follicle-associated epithelium of rat Peyer's patches defines a major restriction of the paracellular pathway.
    Markov AG; Falchuk EL; Kruglova NM; Radloff J; Amasheh S
    Acta Physiol (Oxf); 2016 Jan; 216(1):112-9. PubMed ID: 26228735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPAK-p38 MAPK signal pathway modulates claudin-18 and barrier function of alveolar epithelium after hyperoxic exposure.
    Shen CH; Lin JY; Lu CY; Yang SS; Peng CK; Huang KL
    BMC Pulm Med; 2021 Feb; 21(1):58. PubMed ID: 33588817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptosporidium parvum disrupts intestinal epithelial barrier function via altering expression of key tight junction and adherens junction proteins.
    Kumar A; Chatterjee I; Anbazhagan AN; Jayawardena D; Priyamvada S; Alrefai WA; Sun J; Borthakur A; Dudeja PK
    Cell Microbiol; 2018 Jun; 20(6):e12830. PubMed ID: 29444370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucocorticoids regulate barrier function and claudin expression in intestinal epithelial cells via MKP-1.
    Fischer A; Gluth M; Weege F; Pape UF; Wiedenmann B; Baumgart DC; Theuring F
    Am J Physiol Gastrointest Liver Physiol; 2014 Feb; 306(3):G218-28. PubMed ID: 24309183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toll-like receptor 2 regulates the barrier function of human bronchial epithelial monolayers through atypical protein kinase C zeta, and an increase in expression of claudin-1.
    Ragupathy S; Esmaeili F; Paschoud S; Sublet E; Citi S; Borchard G
    Tissue Barriers; 2014; 2():e29166. PubMed ID: 25101232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(I:C) Induces Human Lung Endothelial Barrier Dysfunction by Disrupting Tight Junction Expression of Claudin-5.
    Huang LY; Stuart C; Takeda K; D'Agnillo F; Golding B
    PLoS One; 2016; 11(8):e0160875. PubMed ID: 27504984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.