These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32411679)

  • 1. Extension of Genetic Marker List Using Unnatural Amino Acid System: An Efficient Genomic Modification Strategy in
    Xu X; Zhong H; Liu W; Tao Y
    Front Bioeng Biotechnol; 2020; 8():145. PubMed ID: 32411679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli.
    Lee BS; Kim S; Ko BJ; Yoo TH
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3016-3023. PubMed ID: 28212794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli.
    Chatterjee A; Sun SB; Furman JL; Xiao H; Schultz PG
    Biochemistry; 2013 Mar; 52(10):1828-37. PubMed ID: 23379331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
    Wang L
    Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes.
    Italia JS; Addy PS; Wrobel CJ; Crawford LA; Lajoie MJ; Zheng Y; Chatterjee A
    Nat Chem Biol; 2017 Apr; 13(4):446-450. PubMed ID: 28192410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid one-step inactivation of single or multiple genes in Escherichia coli.
    Song CW; Lee SY
    Biotechnol J; 2013 Jul; 8(7):776-84. PubMed ID: 23653342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity.
    Santoro SW; Wang L; Herberich B; King DS; Schultz PG
    Nat Biotechnol; 2002 Oct; 20(10):1044-8. PubMed ID: 12244330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating permissive site-specific unnatural aminoacyl-tRNA synthetases.
    Miyake-Stoner SJ; Refakis CA; Hammill JT; Lusic H; Hazen JL; Deiters A; Mehl RA
    Biochemistry; 2010 Mar; 49(8):1667-77. PubMed ID: 20082521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-excising Cre/mutant lox marker recycling system for multiple gene integrations and consecutive gene deletions in Aspergillus oryzae.
    Zhang S; Ban A; Ebara N; Mizutani O; Tanaka M; Shintani T; Gomi K
    J Biosci Bioeng; 2017 Apr; 123(4):403-411. PubMed ID: 28011085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli.
    Reisch CR; Prather KL
    Sci Rep; 2015 Oct; 5():15096. PubMed ID: 26463009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplex Genome Editing in Escherichia coli.
    Jensen SI; Nielsen AT
    Methods Mol Biol; 2018; 1671():119-129. PubMed ID: 29170956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genomically modified Escherichia coli strain carrying an orthogonal E. coli histidyl-tRNA synthetase•tRNA
    Englert M; Vargas-Rodriguez O; Reynolds NM; Wang YS; Söll D; Umehara T
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3009-3015. PubMed ID: 28288813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple-site genetic modifications in Escherichia coli using lambda-Red recombination and I-SceI cleavage.
    Yang J; Sun B; Huang H; Chen B; Xu C; Wang X; Liu J; Diao L
    Biotechnol Lett; 2015 Oct; 37(10):2011-8. PubMed ID: 26063619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic incorporation of recycled unnatural amino acids.
    Ko W; Kim S; Jo K; Lee HS
    Amino Acids; 2016 Feb; 48(2):357-63. PubMed ID: 26358464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of an 'orthogonal' suppressor tRNA derived from E. coli tRNA2(Gln).
    Liu DR; Magliery TJ; Schultz PG
    Chem Biol; 1997 Sep; 4(9):685-91. PubMed ID: 9331409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An enhanced system for unnatural amino acid mutagenesis in E. coli.
    Young TS; Ahmad I; Yin JA; Schultz PG
    J Mol Biol; 2010 Jan; 395(2):361-74. PubMed ID: 19852970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-activation of Cre recombinase in zebrafish embryos through genetic code expansion.
    Brown W; Deiters A
    Methods Enzymol; 2019; 624():265-281. PubMed ID: 31370934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resurrecting the Bacterial Tyrosyl-tRNA Synthetase/tRNA Pair for Expanding the Genetic Code of Both E. coli and Eukaryotes.
    Italia JS; Latour C; Wrobel CJJ; Chatterjee A
    Cell Chem Biol; 2018 Oct; 25(10):1304-1312.e5. PubMed ID: 30078635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites.
    Ozawa K; Loscha KV; Kuppan KV; Loh CT; Dixon NE; Otting G
    Biochem Biophys Res Commun; 2012 Feb; 418(4):652-6. PubMed ID: 22293204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.