These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 32411679)
21. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A. Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681 [TBL] [Abstract][Full Text] [Related]
22. A general approach for the generation of orthogonal tRNAs. Wang L; Schultz PG Chem Biol; 2001 Sep; 8(9):883-90. PubMed ID: 11564556 [TBL] [Abstract][Full Text] [Related]
23. Site-Specific Incorporation of Unnatural Amino Acids into Escherichia coli Recombinant Protein: Methodology Development and Recent Achievement. Smolskaya S; Andreev YA Biomolecules; 2019 Jun; 9(7):. PubMed ID: 31261745 [TBL] [Abstract][Full Text] [Related]
28. Engineering of an orthogonal aminoacyl-tRNA synthetase for efficient incorporation of the non-natural amino acid O-methyl-L-tyrosine using fluorescence-based bacterial cell sorting. Kuhn SM; Rubini M; Fuhrmann M; Theobald I; Skerra A J Mol Biol; 2010 Nov; 404(1):70-87. PubMed ID: 20837025 [TBL] [Abstract][Full Text] [Related]
29. Site-specific incorporation of a fluorescent terphenyl unnatural amino acid. Lampkowski JS; Uthappa DM; Young DD Bioorg Med Chem Lett; 2015 Nov; 25(22):5277-80. PubMed ID: 26421994 [TBL] [Abstract][Full Text] [Related]
30. Optical Control of a Neuronal Protein Using a Genetically Encoded Unnatural Amino Acid in Neurons. Kang JY; Kawaguchi D; Wang L J Vis Exp; 2016 Mar; (109):e53818. PubMed ID: 27078635 [TBL] [Abstract][Full Text] [Related]
31. Homologous Recombineering to Generate Chromosomal Deletions in Escherichia coli. Bryant JA; Lee DJ Methods Mol Biol; 2017; 1624():3-16. PubMed ID: 28842871 [TBL] [Abstract][Full Text] [Related]
32. Improvement of a yeast self-excising integrative vector by prevention of expression leakage of the intronated Cre recombinase gene during plasmid maintenance in Escherichia coli. Agaphonov MO FEMS Microbiol Lett; 2017 Dec; 364(22):. PubMed ID: 29069450 [TBL] [Abstract][Full Text] [Related]
33. Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli. Pyne ME; Moo-Young M; Chung DA; Chou CP Appl Environ Microbiol; 2015 Aug; 81(15):5103-14. PubMed ID: 26002895 [TBL] [Abstract][Full Text] [Related]
34. Incorporation of Unnatural Amino Acids into Proteins Expressed in Mammalian Cells. Serfling R; Coin I Methods Enzymol; 2016; 580():89-107. PubMed ID: 27586329 [TBL] [Abstract][Full Text] [Related]
35. Site Specific Genetic Incorporation of Azidophenylalanine in Schizosaccharomyces pombe. Shao N; Singh NS; Slade SE; Jones AM; Balasubramanian MK Sci Rep; 2015 Nov; 5():17196. PubMed ID: 26597962 [TBL] [Abstract][Full Text] [Related]
36. Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli. Chiang CJ; Chen PT; Chao YP Biotechnol Bioeng; 2008 Dec; 101(5):985-95. PubMed ID: 18553504 [TBL] [Abstract][Full Text] [Related]
37. Self-excising integrative yeast plasmid vectors containing an intronated recombinase gene. Agaphonov M; Alexandrov A FEMS Yeast Res; 2014 Nov; 14(7):1048-54. PubMed ID: 25124534 [TBL] [Abstract][Full Text] [Related]
38. Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Liu W; Brock A; Chen S; Chen S; Schultz PG Nat Methods; 2007 Mar; 4(3):239-44. PubMed ID: 17322890 [TBL] [Abstract][Full Text] [Related]