These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 32411704)

  • 61. Cancer Stem Cell-Inducing Media Activates Senescence Reprogramming in Fibroblasts.
    Perrigue PM; Rakoczy M; Pawlicka KP; Belter A; Giel-Pietraszuk M; Naskręt-Barciszewska M; Barciszewski J; Figlerowicz M
    Cancers (Basel); 2020 Jun; 12(7):. PubMed ID: 32629974
    [TBL] [Abstract][Full Text] [Related]  

  • 62. S100A13 promotes senescence-associated secretory phenotype and cellular senescence via modulation of non-classical secretion of IL-1α.
    Su Y; Xu C; Sun Z; Liang Y; Li G; Tong T; Chen J
    Aging (Albany NY); 2019 Jan; 11(2):549-572. PubMed ID: 30670674
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cortical neurons develop a senescence-like phenotype promoted by dysfunctional autophagy.
    Moreno-Blas D; Gorostieta-Salas E; Pommer-Alba A; Muciño-Hernández G; Gerónimo-Olvera C; Maciel-Barón LA; Konigsberg M; Massieu L; Castro-Obregón S
    Aging (Albany NY); 2019 Aug; 11(16):6175-6198. PubMed ID: 31469660
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP).
    Salminen A; Kauppinen A; Kaarniranta K
    Cell Signal; 2012 Apr; 24(4):835-45. PubMed ID: 22182507
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hematopoietic stem cell-derived adipocytes and fibroblasts in the tumor microenvironment.
    Xiong Y; McDonald LT; Russell DL; Kelly RR; Wilson KR; Mehrotra M; Soloff AC; LaRue AC
    World J Stem Cells; 2015 Mar; 7(2):253-65. PubMed ID: 25815113
    [TBL] [Abstract][Full Text] [Related]  

  • 66. MLL1 is essential for the senescence-associated secretory phenotype.
    Capell BC; Drake AM; Zhu J; Shah PP; Dou Z; Dorsey J; Simola DF; Donahue G; Sammons M; Rai TS; Natale C; Ridky TW; Adams PD; Berger SL
    Genes Dev; 2016 Feb; 30(3):321-36. PubMed ID: 26833731
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cellular Senescence: A Translational Perspective.
    Kirkland JL; Tchkonia T
    EBioMedicine; 2017 Jul; 21():21-28. PubMed ID: 28416161
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cancer-associated adipocytes: key players in breast cancer progression.
    Wu Q; Li B; Li Z; Li J; Sun S; Sun S
    J Hematol Oncol; 2019 Sep; 12(1):95. PubMed ID: 31500658
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Engulfment and cannibalism drive persistence of chemotherapy-treated tumor cells: can they be targeted?
    Tonnessen-Murray CA; Jackson JG
    Mol Cell Oncol; 2020; 7(1):1688601. PubMed ID: 31993500
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhancing chemotherapy efficacy by reprogramming the senescence-associated secretory phenotype of prostate tumors: A way to reactivate the antitumor immunity.
    Toso A; Di Mitri D; Alimonti A
    Oncoimmunology; 2015 Mar; 4(3):e994380. PubMed ID: 25949917
    [No Abstract]   [Full Text] [Related]  

  • 71. Unraveling the nexus between cellular senescence and malignant transformation: a paradigm shift in cancer research.
    Song X; Liu X; Guo Q; Xu H; Cao L
    Cancer Biol Med; 2024 Jun; ():. PubMed ID: 38940671
    [No Abstract]   [Full Text] [Related]  

  • 72. Senescence: Tumorigenesis under surveillance.
    Burgess DJ
    Nat Rev Cancer; 2011 Dec; 12(1):6. PubMed ID: 22129803
    [No Abstract]   [Full Text] [Related]  

  • 73. Centrosome dysfunction: a link between senescence and tumor immunity.
    Wu Q; Li B; Liu L; Sun S; Sun S
    Signal Transduct Target Ther; 2020 Jun; 5(1):107. PubMed ID: 32606370
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cancer-associated adipocytes as immunomodulators in cancer.
    Wu Q; Li B; Li J; Sun S; Yuan J; Sun S
    Biomark Res; 2021 Jan; 9(1):2. PubMed ID: 33413697
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The Dynamic Process and Its Dual Effects on Tumors of Therapy-Induced Senescence.
    Liao C; Xiao Y; Liu L
    Cancer Manag Res; 2020; 12():13553-13566. PubMed ID: 33408525
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Engineered 3D ex vivo models to recapitulate the complex stromal and immune interactions within the tumor microenvironment.
    Ravi K; Manoharan TJM; Wang KC; Pockaj B; Nikkhah M
    Biomaterials; 2024 Mar; 305():122428. PubMed ID: 38147743
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adipocyte Microenvironment in Ovarian Cancer: A Critical Contributor?
    Duarte Mendes A; Freitas AR; Vicente R; Vitorino M; Vaz Batista M; Silva M; Braga S
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38068912
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bone marrow adipocytes induce cancer-associated fibroblasts and immune evasion, enhancing invasion and drug resistance.
    Sato S; Hiruma T; Koizumi M; Yoshihara M; Nakamura Y; Tadokoro H; Motomatsu S; Yamanaka T; Washimi K; Okubo Y; Yoshioka E; Kasajima R; Yamashita T; Kishida T; Yokose T; Miyagi Y
    Cancer Sci; 2023 Jun; 114(6):2674-2688. PubMed ID: 36916999
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Tumor Microenvironment-A Short Review of Cellular and Interaction Diversity.
    Bożyk A; Wojas-Krawczyk K; Krawczyk P; Milanowski J
    Biology (Basel); 2022 Jun; 11(6):. PubMed ID: 35741450
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.