These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 32412029)
1. Mechanically robust enzymatically degradable shape memory polyurethane urea with a rapid recovery response induced by NIR. Li X; Liu W; Li Y; Lan W; Zhao D; Wu H; Feng Y; He X; Li Z; Li J; Luo F; Tan H J Mater Chem B; 2020 Jun; 8(23):5117-5130. PubMed ID: 32412029 [TBL] [Abstract][Full Text] [Related]
2. NIR Photothermal-Responsive Shape Memory Polyurethane with Protein-Inspired Aggregated Chymotrypsin-Sensitive Degradable Domains. Yang R; Liu W; Song N; Li X; Li Z; Luo F; Li J; Tan H Macromol Rapid Commun; 2022 Nov; 43(21):e2200490. PubMed ID: 35836315 [TBL] [Abstract][Full Text] [Related]
3. Effect of soft segment crystallization and hard segment physical crosslink on shape memory function in antibacterial segmented polyurethane ionomers. Zhu Y; Hu J; Yeung K Acta Biomater; 2009 Nov; 5(9):3346-57. PubMed ID: 19460466 [TBL] [Abstract][Full Text] [Related]
4. Shape Memory Properties and Enzymatic Degradability of Poly(ε-caprolactone)-Based Polyurethane Urea Containing Phenylalanine-Derived Chain Extender. Wang R; Zhang F; Lin W; Liu W; Li J; Luo F; Wang Y; Tan H Macromol Biosci; 2018 Jun; 18(6):e1800054. PubMed ID: 29687605 [TBL] [Abstract][Full Text] [Related]
5. Bending shape memory behaviours of carbon fibre reinforced polyurethane-type shape memory polymer composites under relatively small deformation: Characterisation and computational simulation. Cheng X; Chen Y; Dai S; Bilek MMM; Bao S; Ye L J Mech Behav Biomed Mater; 2019 Dec; 100():103372. PubMed ID: 31369958 [TBL] [Abstract][Full Text] [Related]
6. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation. Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917 [TBL] [Abstract][Full Text] [Related]
7. Biodegradable shape-memory polymers using polycaprolactone and isosorbide based polyurethane blends. Joo YS; Cha JR; Gong MS Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():426-435. PubMed ID: 30033273 [TBL] [Abstract][Full Text] [Related]
8. Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers. Chien YC; Chuang WT; Jeng US; Hsu SH ACS Appl Mater Interfaces; 2017 Feb; 9(6):5419-5429. PubMed ID: 28165708 [TBL] [Abstract][Full Text] [Related]
9. Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content. Meng Q; Hu J; Zhu Y J Biomater Sci Polym Ed; 2008; 19(11):1437-54. PubMed ID: 18973722 [TBL] [Abstract][Full Text] [Related]
10. Post-Crosslinked Polyurethanes with Excellent Shape Memory Property. Liu W; Zhao Y; Wang R; Li J; Li J; Luo F; Tan H; Fu Q Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 29083102 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the effects of polycaprolactone molecular weight and graphene content on crystallinity, mechanical properties and shape memory behavior of polyurethane/graphene nanocomposites. Babaie A; Rezaei M; Sofla RLM J Mech Behav Biomed Mater; 2019 Aug; 96():53-68. PubMed ID: 31029995 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique. Zhang C; Wen X; Vyavahare NR; Boland T Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156 [TBL] [Abstract][Full Text] [Related]
13. Thermo-Mechanical Properties of Glass Fiber Reinforced Shape Memory Polyurethane for Orthodontic Application. Liu YF; Wu JL; Song SL; Xu LX; Chen J; Peng W J Mater Sci Mater Med; 2018 Aug; 29(9):148. PubMed ID: 30171364 [TBL] [Abstract][Full Text] [Related]
14. Biocompatible thermo- and magneto-responsive shape-memory polyurethane bionanocomposites. Calvo-Correas T; Shirole A; Crippa F; Fink A; Weder C; Corcuera MA; Eceiza A Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():658-668. PubMed ID: 30678953 [TBL] [Abstract][Full Text] [Related]
15. [Synthesis and characterization of polylactide-based thermosetting polyurethanes with shape memory properties]. Shi S; Gu L; Yang Y; Yu H; Chen R; Xiao X; Qiu J Sheng Wu Gong Cheng Xue Bao; 2016 Jun; 32(6):831-838. PubMed ID: 29019191 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and properties of biodegradable poly(ester-urethane)s based on poly(ε-caprolactone) and aliphatic diurethane diisocyanate for long-term implant application: effect of uniform-size hard segment content. Zhang L; Zhang C; Zhang W; Zhang H; Hou Z J Biomater Sci Polym Ed; 2019 Sep; 30(13):1212-1226. PubMed ID: 31140366 [TBL] [Abstract][Full Text] [Related]
17. Degradation behavior and biocompatibility of PEG/PANI-derived polyurethane co-polymers. Luo YL; Nan YF; Xu F; Chen YS; Zhao P J Biomater Sci Polym Ed; 2010; 21(8-9):1143-72. PubMed ID: 20507713 [TBL] [Abstract][Full Text] [Related]
18. Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Ajili SH; Ebrahimi NG; Soleimani M Acta Biomater; 2009 Jun; 5(5):1519-30. PubMed ID: 19249261 [TBL] [Abstract][Full Text] [Related]
19. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310 [TBL] [Abstract][Full Text] [Related]