BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32412237)

  • 1. Cost Analysis of Direct Air Capture and Sequestration Coupled to Low-Carbon Thermal Energy in the United States.
    McQueen N; Psarras P; Pilorgé H; Liguori S; He J; Yuan M; Woodall CM; Kian K; Pierpoint L; Jurewicz J; Lucas JM; Jacobson R; Deich N; Wilcox J
    Environ Sci Technol; 2020 Jun; 54(12):7542-7551. PubMed ID: 32412237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost Analysis of Carbon Capture and Sequestration from U.S. Natural Gas-Fired Power Plants.
    Psarras P; He J; Pilorgé H; McQueen N; Jensen-Fellows A; Kian K; Wilcox J
    Environ Sci Technol; 2020 May; 54(10):6272-6280. PubMed ID: 32329614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cost Analysis of Carbon Capture and Sequestration of Process Emissions from the U.S. Industrial Sector.
    Pilorgé H; McQueen N; Maynard D; Psarras P; He J; Rufael T; Wilcox J
    Environ Sci Technol; 2020 Jun; 54(12):7524-7532. PubMed ID: 32432460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Direct Air Capture Integrated with Wind Energy and Enhanced Oil Recovery.
    Datta A; Krishnamoorti R
    Environ Sci Technol; 2023 Feb; 57(5):2084-2092. PubMed ID: 36692891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Policy-Driven Potential for Deploying Carbon Capture and Sequestration in a Fossil-Rich Power Sector.
    Dindi A; Coddington K; Garofalo JF; Wu W; Zhai H
    Environ Sci Technol; 2022 Jul; 56(14):9872-9881. PubMed ID: 35785993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-term deployment of carbon capture and sequestration from biorefineries in the United States.
    Sanchez DL; Johnson N; McCoy ST; Turner PA; Mach KJ
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4875-4880. PubMed ID: 29686063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergency deployment of direct air capture as a response to the climate crisis.
    Hanna R; Abdulla A; Xu Y; Victor DG
    Nat Commun; 2021 Jan; 12(1):368. PubMed ID: 33446663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fossil-Fuel Options for Power Sector Net-Zero Emissions with Sequestration Tax Credits.
    Anderson JJ; Rode DC; Zhai H; Fischbeck PS
    Environ Sci Technol; 2022 Aug; 56(16):11162-11171. PubMed ID: 35926127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar-Powered Direct Air Capture: Techno-Economic and Environmental Assessment.
    Prats-Salvado E; Jagtap N; Monnerie N; Sattler C
    Environ Sci Technol; 2024 Feb; 58(5):2282-2292. PubMed ID: 38270080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.
    Zhai H; Ou Y; Rubin ES
    Environ Sci Technol; 2015 Jul; 49(13):7571-9. PubMed ID: 26023722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategic Carbon Dioxide Infrastructure to Achieve a Low-Carbon Power Sector in the Midwestern and South-Central United States.
    Tao Y; Edwards RWJ; Mauzerall DL; Celia MA
    Environ Sci Technol; 2021 Nov; 55(22):15013-15024. PubMed ID: 34714051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The United States Department of Energy's Regional Carbon Sequestration Partnerships Program Validation Phase.
    Litynski JT; Plasynski S; McIlvried HG; Mahoney C; Srivastava RD
    Environ Int; 2008 Jan; 34(1):127-38. PubMed ID: 17950875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing the cost of Ca-based direct air capture of CO2.
    Zeman F
    Environ Sci Technol; 2014 Oct; 48(19):11730-5. PubMed ID: 25207956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States.
    Baik E; Sanchez DL; Turner PA; Mach KJ; Field CB; Benson SM
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3290-3295. PubMed ID: 29531081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Roefs P; Moretti M; Welkenhuysen K; Piessens K; Compernolle T
    J Environ Manage; 2019 Jun; 239():167-177. PubMed ID: 30901695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging trends in direct air capture of CO
    Abdullatif Y; Sodiq A; Mir N; Bicer Y; Al-Ansari T; El-Naas MH; Amhamed AI
    RSC Adv; 2023 Feb; 13(9):5687-5722. PubMed ID: 36816069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current status and pillars of direct air capture technologies.
    Ozkan M; Nayak SP; Ruiz AD; Jiang W
    iScience; 2022 Apr; 25(4):103990. PubMed ID: 35310937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil carbon sequestration and biochar as negative emission technologies.
    Smith P
    Glob Chang Biol; 2016 Mar; 22(3):1315-24. PubMed ID: 26732128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.
    Supekar SD; Skerlos SJ
    Environ Sci Technol; 2015 Oct; 49(20):12576-84. PubMed ID: 26422409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.