These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32412626)

  • 21. The History of Ocean Oxygenation.
    Reinhard CT; Planavsky NJ
    Ann Rev Mar Sci; 2022 Jan; 14():331-353. PubMed ID: 34416124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protracted oxygenation across the Cambrian-Ordovician transition: A key initiator of the Great Ordovician Biodiversification Event?
    Kozik NP; Young SA; Lindskog A; Ahlberg P; Owens JD
    Geobiology; 2023 May; 21(3):323-340. PubMed ID: 36703593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Earth's oxygen cycle and the evolution of animal life.
    Reinhard CT; Planavsky NJ; Olson SL; Lyons TW; Erwin DH
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):8933-8. PubMed ID: 27457943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A record of deep-ocean dissolved O
    Stolper DA; Keller CB
    Nature; 2018 Jan; 553(7688):323-327. PubMed ID: 29310121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels.
    Stolper DA; Bucholz CE
    Proc Natl Acad Sci U S A; 2019 Apr; 116(18):8746-8755. PubMed ID: 30975756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic oxygen and coupled biological and ecological innovation during the second wave of the Ediacara Biota.
    Evans SD; Diamond CW; Droser ML; Lyons TW
    Emerg Top Life Sci; 2018 Sep; 2(2):223-233. PubMed ID: 32412611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation.
    Sperling EA; Wolock CJ; Morgan AS; Gill BC; Kunzmann M; Halverson GP; Macdonald FA; Knoll AH; Johnston DT
    Nature; 2015 Jul; 523(7561):451-4. PubMed ID: 26201598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of marine eukaryote evolution on phosphorus, carbon and oxygen cycling across the Proterozoic-Phanerozoic transition.
    Lenton TM; Daines SJ
    Emerg Top Life Sci; 2018 Sep; 2(2):267-278. PubMed ID: 32412617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extensive marine anoxia during the terminal Ediacaran Period.
    Zhang F; Xiao S; Kendall B; Romaniello SJ; Cui H; Meyer M; Gilleaudeau GJ; Kaufman AJ; Anbar AD
    Sci Adv; 2018 Jun; 4(6):eaan8983. PubMed ID: 29938217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arsenic stress after the Proterozoic glaciations.
    Fru EC; Arvestål E; Callac N; El Albani A; Kilias S; Argyraki A; Jakobsson M
    Sci Rep; 2015 Dec; 5():17789. PubMed ID: 26635187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals.
    He T; Zhu M; Mills BJW; Wynn PM; Zhuravlev AY; Tostevin R; Pogge von Strandmann PAE; Yang A; Poulton SW; Shields GA
    Nat Geosci; 2019 Jun; 12(6):468-474. PubMed ID: 31178922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidation of the Ediacaran ocean.
    Fike DA; Grotzinger JP; Pratt LM; Summons RE
    Nature; 2006 Dec; 444(7120):744-7. PubMed ID: 17151665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tracing the stepwise oxygenation of the Proterozoic ocean.
    Scott C; Lyons TW; Bekker A; Shen Y; Poulton SW; Chu X; Anbar AD
    Nature; 2008 Mar; 452(7186):456-9. PubMed ID: 18368114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regional nutrient decrease drove redox stabilisation and metazoan diversification in the late Ediacaran Nama Group, Namibia.
    Bowyer FT; Shore AJ; Wood RA; Alcott LJ; Thomas AL; Butler IB; Curtis A; Hainanan S; Curtis-Walcott S; Penny AM; Poulton SW
    Sci Rep; 2020 Feb; 10(1):2240. PubMed ID: 32042140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxygen, temperature and the deep-marine stenothermal cradle of Ediacaran evolution.
    Boag TH; Stockey RG; Elder LE; Hull PM; Sperling EA
    Proc Biol Sci; 2018 Dec; 285(1893):20181724. PubMed ID: 30963899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconciling proxy records and models of Earth's oxygenation during the Neoproterozoic and Palaeozoic.
    Tostevin R; Mills BJW
    Interface Focus; 2020 Aug; 10(4):20190137. PubMed ID: 32642053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere.
    Kah LC; Lyons TW; Frank TD
    Nature; 2004 Oct; 431(7010):834-8. PubMed ID: 15483609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable ocean redox during the main phase of the Great Ordovician Biodiversification Event.
    Del Rey Á; Rasmussen CMØ; Calner M; Wu R; Asael D; Dahl TW
    Commun Earth Environ; 2022; 3(1):220. PubMed ID: 36186548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early Cambrian ocean anoxia in South China.
    Jiang SY; Pi DH; Heubeck C; Frimmel H; Liu YP; Deng HL; Ling HF; Yang JH
    Nature; 2009 Jun; 459(7248):E5-6; discussion E6. PubMed ID: 19516284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Earliest land plants created modern levels of atmospheric oxygen.
    Lenton TM; Dahl TW; Daines SJ; Mills BJ; Ozaki K; Saltzman MR; Porada P
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9704-9. PubMed ID: 27528678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.