These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 32412656)
1. Phytochrome-imposed inhibition of PIF7 activity shapes photoperiodic growth in Arabidopsis together with PIF1, 3, 4 and 5. Leivar P; Martín G; Soy J; Dalton-Roesler J; Quail PH; Monte E Physiol Plant; 2020 Jul; 169(3):452-466. PubMed ID: 32412656 [TBL] [Abstract][Full Text] [Related]
2. PIF1 promotes phytochrome-regulated growth under photoperiodic conditions in Arabidopsis together with PIF3, PIF4, and PIF5. Soy J; Leivar P; Monte E J Exp Bot; 2014 Jun; 65(11):2925-36. PubMed ID: 24420574 [TBL] [Abstract][Full Text] [Related]
3. Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis. Soy J; Leivar P; González-Schain N; Sentandreu M; Prat S; Quail PH; Monte E Plant J; 2012 Aug; 71(3):390-401. PubMed ID: 22409654 [TBL] [Abstract][Full Text] [Related]
4. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Leivar P; Monte E; Al-Sady B; Carle C; Storer A; Alonso JM; Ecker JR; Quail PH Plant Cell; 2008 Feb; 20(2):337-52. PubMed ID: 18252845 [TBL] [Abstract][Full Text] [Related]
5. Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop. Leivar P; Monte E; Cohn MM; Quail PH Mol Plant; 2012 May; 5(3):734-49. PubMed ID: 22492120 [TBL] [Abstract][Full Text] [Related]
6. Insight into the mechanism of end-of-day far-red light (EODFR)-induced shade avoidance responses in Arabidopsis thaliana. Mizuno T; Oka H; Yoshimura F; Ishida K; Yamashino T Biosci Biotechnol Biochem; 2015; 79(12):1987-94. PubMed ID: 26193333 [TBL] [Abstract][Full Text] [Related]
7. Phytochrome interacting factors (PIFs) are essential regulators for sucrose-induced hypocotyl elongation in Arabidopsis. Liu Z; Zhang Y; Liu R; Hao H; Wang Z; Bi Y J Plant Physiol; 2011 Oct; 168(15):1771-9. PubMed ID: 21684034 [TBL] [Abstract][Full Text] [Related]
8. Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana. Kunihiro A; Yamashino T; Nakamichi N; Niwa Y; Nakanishi H; Mizuno T Plant Cell Physiol; 2011 Aug; 52(8):1315-29. PubMed ID: 21666227 [TBL] [Abstract][Full Text] [Related]
9. Dynamic regulation of PIF5 by COP1-SPA complex to optimize photomorphogenesis in Arabidopsis. Pham VN; Kathare PK; Huq E Plant J; 2018 Oct; 96(2):260-273. PubMed ID: 30144338 [TBL] [Abstract][Full Text] [Related]
10. PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings. Fiorucci AS; Galvão VC; Ince YÇ; Boccaccini A; Goyal A; Allenbach Petrolati L; Trevisan M; Fankhauser C New Phytol; 2020 Apr; 226(1):50-58. PubMed ID: 31705802 [TBL] [Abstract][Full Text] [Related]
11. A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana. Nomoto Y; Kubozono S; Miyachi M; Yamashino T; Nakamichi N; Mizuno T Plant Cell Physiol; 2012 Nov; 53(11):1965-73. PubMed ID: 23037004 [TBL] [Abstract][Full Text] [Related]
12. Two bHLH transcription factors, bHLH48 and bHLH60, associate with phytochrome interacting factor 7 to regulate hypocotyl elongation in Arabidopsis. Yang C; Huang S; Zeng Y; Liu C; Ma Q; Pruneda-Paz J; Kay SA; Li L Cell Rep; 2021 May; 35(5):109054. PubMed ID: 33951433 [TBL] [Abstract][Full Text] [Related]
13. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Niwa Y; Yamashino T; Mizuno T Plant Cell Physiol; 2009 Apr; 50(4):838-54. PubMed ID: 19233867 [TBL] [Abstract][Full Text] [Related]
14. Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors. Kim K; Shin J; Lee SH; Kweon HS; Maloof JN; Choi G Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1729-34. PubMed ID: 21220341 [TBL] [Abstract][Full Text] [Related]
15. Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Shen H; Zhu L; Castillon A; Majee M; Downie B; Huq E Plant Cell; 2008 Jun; 20(6):1586-602. PubMed ID: 18539749 [TBL] [Abstract][Full Text] [Related]
16. Molecular convergence of clock and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters. Soy J; Leivar P; González-Schain N; Martín G; Diaz C; Sentandreu M; Al-Sady B; Quail PH; Monte E Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4870-5. PubMed ID: 27071129 [TBL] [Abstract][Full Text] [Related]
17. PHOSPHATASE 2A dephosphorylates PHYTOCHROME-INTERACTING FACTOR3 to modulate photomorphogenesis in Arabidopsis. Cai X; Lee S; Gómez Jaime AP; Tang W; Sun Y; Huq E Plant Cell; 2024 Oct; 36(10):4457-4471. PubMed ID: 38996075 [TBL] [Abstract][Full Text] [Related]
18. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Lee CM; Thomashow MF Proc Natl Acad Sci U S A; 2012 Sep; 109(37):15054-9. PubMed ID: 22927419 [TBL] [Abstract][Full Text] [Related]
19. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana. Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003 [TBL] [Abstract][Full Text] [Related]
20. Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana. Yamashino T; Nomoto Y; Lorrain S; Miyachi M; Ito S; Nakamichi N; Fankhauser C; Mizuno T Plant Signal Behav; 2013 Mar; 8(3):e23390. PubMed ID: 23299336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]