These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32412680)

  • 1. Synchronicity of excitatory inputs drives hippocampal networks to distinct oscillatory patterns.
    Geschwill P; Kaiser ME; Grube P; Lehmann N; Thome C; Draguhn A; Hollnagel JO; Both M
    Hippocampus; 2020 Oct; 30(10):1044-1057. PubMed ID: 32412680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation.
    Butler JL; Mendonça PR; Robinson HP; Paulsen O
    J Neurosci; 2016 Apr; 36(15):4155-69. PubMed ID: 27076416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscarinic receptor activation disrupts hippocampal sharp wave-ripples.
    Norimoto H; Mizunuma M; Ishikawa D; Matsuki N; Ikegaya Y
    Brain Res; 2012 Jun; 1461():1-9. PubMed ID: 22608077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-specific synaptic plasticity induced by network oscillations.
    Zarnadze S; Bäuerle P; Santos-Torres J; Böhm C; Schmitz D; Geiger JR; Dugladze T; Gloveli T
    Elife; 2016 May; 5():. PubMed ID: 27218453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Firing of Theta State-Related Septal Cholinergic Neurons Disrupt Hippocampal Ripple Oscillations via Muscarinic Receptors.
    Ma X; Zhang Y; Wang L; Li N; Barkai E; Zhang X; Lin L; Xu J
    J Neurosci; 2020 Apr; 40(18):3591-3603. PubMed ID: 32265261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhythmic constraints on hippocampal processing: state and phase-related fluctuations of synaptic excitability during theta and the slow oscillation.
    Schall KP; Kerber J; Dickson CT
    J Neurophysiol; 2008 Feb; 99(2):888-99. PubMed ID: 18046004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-Locked Inhibition, but Not Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice In Vivo.
    Gan J; Weng SM; Pernía-Andrade AJ; Csicsvari J; Jonas P
    Neuron; 2017 Jan; 93(2):308-314. PubMed ID: 28041883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The critical role of persistent sodium current in hippocampal gamma oscillations.
    Kang YJ; Clement EM; Sumsky SL; Xiang Y; Park IH; Santaniello S; Greenfield LJ; Garcia-Rill E; Smith BN; Lee SH
    Neuropharmacology; 2020 Jan; 162():107787. PubMed ID: 31550457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lamina-specific contribution of glutamatergic and GABAergic potentials to hippocampal sharp wave-ripple complexes.
    Schönberger J; Draguhn A; Both M
    Front Neural Circuits; 2014; 8():103. PubMed ID: 25202239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of Gamma Frequency Power during Hippocampal Sharp-Wave Ripples.
    Oliva A; Fernández-Ruiz A; Fermino de Oliveira E; Buzsáki G
    Cell Rep; 2018 Nov; 25(7):1693-1700.e4. PubMed ID: 30428340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hippocampal Ripple Oscillations and Inhibition-First Network Models: Frequency Dynamics and Response to GABA Modulators.
    Donoso JR; Schmitz D; Maier N; Kempter R
    J Neurosci; 2018 Mar; 38(12):3124-3146. PubMed ID: 29453207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A detailed anatomical and mathematical model of the hippocampal formation for the generation of sharp-wave ripples and theta-nested gamma oscillations.
    Aussel A; Buhry L; Tyvaert L; Ranta R
    J Comput Neurosci; 2018 Dec; 45(3):207-221. PubMed ID: 30382451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of oxytocin on mouse hippocampal oscillations in vitro.
    Maier P; Kaiser ME; Grinevich V; Draguhn A; Both M
    Eur J Neurosci; 2016 Dec; 44(11):2885-2898. PubMed ID: 27717106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Downstream effects of hippocampal sharp wave ripple oscillations on medial entorhinal cortex layer V neurons in vitro.
    Roth FC; Beyer KM; Both M; Draguhn A; Egorov AV
    Hippocampus; 2016 Dec; 26(12):1493-1508. PubMed ID: 27479916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the GABA-uptake blocker NNC-711 on spontaneous sharp wave-ripple complexes in mouse hippocampal slices.
    Viereckel T; Kostic M; Bähner F; Draguhn A; Both M
    Hippocampus; 2013 May; 23(5):323-9. PubMed ID: 23460368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of sharp wave initiation and ripple generation.
    Schlingloff D; Káli S; Freund TF; Hájos N; Gulyás AI
    J Neurosci; 2014 Aug; 34(34):11385-98. PubMed ID: 25143618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced sharp wave-ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices.
    Nimmrich V; Maier N; Schmitz D; Draguhn A
    J Physiol; 2005 Mar; 563(Pt 3):663-70. PubMed ID: 15661820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous activation of gamma and theta network oscillations in rat hippocampal slice cultures.
    Fischer Y; Wittner L; Freund TF; Gähwiler BH
    J Physiol; 2002 Mar; 539(Pt 3):857-68. PubMed ID: 11897855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choline-mediated modulation of hippocampal sharp wave-ripple complexes in vitro.
    Fischer V; Both M; Draguhn A; Egorov AV
    J Neurochem; 2014 Jun; 129(5):792-805. PubMed ID: 24673342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balanced synaptic currents underlie low-frequency oscillations in the subiculum.
    Royzen F; Williams S; Fernandez FR; White JA
    Hippocampus; 2019 Dec; 29(12):1178-1189. PubMed ID: 31301195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.