These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32413257)

  • 1. Design and Experimental Evaluation of a Minimal, Innocuous Watermarking Strategy to Distinguish Near-Identical DNA and RNA Sequences.
    Boonekamp FJ; Dashko S; Duiker D; Gehrmann T; van den Broek M; den Ridder M; Pabst M; Robert V; Abeel T; Postma ED; Daran JM; Daran-Lapujade P
    ACS Synth Biol; 2020 Jun; 9(6):1361-1375. PubMed ID: 32413257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.
    Cernak P; Estrela R; Poddar S; Skerker JM; Cheng YF; Carlson AK; Chen B; Glynn VM; Furlan M; Ryan OW; Donnelly MK; Arkin AP; Taylor JW; Cate JHD
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway swapping: Toward modular engineering of essential cellular processes.
    Kuijpers NG; Solis-Escalante D; Luttik MA; Bisschops MM; Boonekamp FJ; van den Broek M; Pronk JT; Daran JM; Daran-Lapujade P
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):15060-15065. PubMed ID: 27956602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration.
    Huang S; Geng A
    J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae.
    Swiat MA; Dashko S; den Ridder M; Wijsman M; van der Oost J; Daran JM; Daran-Lapujade P
    Nucleic Acids Res; 2017 Dec; 45(21):12585-12598. PubMed ID: 29106617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes.
    Tarasava K; Oh EJ; Eckert CA; Gill RT
    Biotechnol J; 2018 Sep; 13(9):e1700586. PubMed ID: 29917318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in
    Giersch RM; Finnigan GC
    Yale J Biol Med; 2017 Dec; 90(4):643-651. PubMed ID: 29259528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic Biology of Yeast.
    Liu Z; Zhang Y; Nielsen J
    Biochemistry; 2019 Mar; 58(11):1511-1520. PubMed ID: 30618248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Highly Characterized Synthetic Landing Pad System for Precise Multicopy Gene Integration in Yeast.
    Bourgeois L; Pyne ME; Martin VJJ
    ACS Synth Biol; 2018 Nov; 7(11):2675-2685. PubMed ID: 30372609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Progress in gene editing technologies for Saccharomyces cerevisiae].
    Li H; Liang X; Zhou J
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):950-965. PubMed ID: 33783160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise genome-wide base editing by the CRISPR Nickase system in yeast.
    Satomura A; Nishioka R; Mori H; Sato K; Kuroda K; Ueda M
    Sci Rep; 2017 May; 7(1):2095. PubMed ID: 28522803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism.
    Solis-Escalante D; Kuijpers NG; Barrajon-Simancas N; van den Broek M; Pronk JT; Daran JM; Daran-Lapujade P
    Eukaryot Cell; 2015 Aug; 14(8):804-16. PubMed ID: 26071034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex Genome Engineering for Optimizing Bioproduction in Saccharomyces cerevisiae.
    Auxillos JY; Garcia-Ruiz E; Jones S; Li T; Jiang S; Dai J; Cai Y
    Biochemistry; 2019 Mar; 58(11):1492-1500. PubMed ID: 30817136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locus specific engineering of tandem DNA repeats in the genome of Saccharomyces cerevisiae using CRISPR/Cas9 and overlapping oligonucleotides.
    Lancrey A; Joubert A; Boulé JB
    Sci Rep; 2018 May; 8(1):7127. PubMed ID: 29740109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A history of genome editing in Saccharomyces cerevisiae.
    Alexander WG
    Yeast; 2018 May; 35(5):355-360. PubMed ID: 29247562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Compatibility and Extensibility of Orthogonal Replication.
    Javanpour AA; Liu CC
    ACS Synth Biol; 2019 Jun; 8(6):1249-1256. PubMed ID: 31095905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast synthetic biology for designed cell factories producing secretory recombinant proteins.
    Thak EJ; Yoo SJ; Moon HY; Kang HA
    FEMS Yeast Res; 2020 Mar; 20(2):. PubMed ID: 32009173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.