BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32413407)

  • 1. Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis.
    Boumezbeur AH; Bruer M; Stoecklin G; Mack M
    Metab Eng; 2020 Sep; 61():58-68. PubMed ID: 32413407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis.
    Shi T; Wang Y; Wang Z; Wang G; Liu D; Fu J; Chen T; Zhao X
    Microb Cell Fact; 2014 Jul; 13():101. PubMed ID: 25023436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo engineering riboflavin production Bacillus subtilis by overexpressing the downstream genes in the purine biosynthesis pathway.
    Liu C; Xia M; Fang H; Xu F; Wang S; Zhang D
    Microb Cell Fact; 2024 May; 23(1):159. PubMed ID: 38822377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression control by
    Kirchner M; Schneider S
    RNA; 2017 May; 23(5):762-769. PubMed ID: 28209633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis.
    Pedrolli DB; Kühm C; Sévin DC; Vockenhuber MP; Sauer U; Suess B; Mack M
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):14054-9. PubMed ID: 26494285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production.
    Shi S; Chen T; Zhang Z; Chen X; Zhao X
    Metab Eng; 2009; 11(4-5):243-52. PubMed ID: 19446032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting riboswitches with synthetic small RNAs for metabolic engineering.
    Lins MRDCR; Amorim LADS; Corrêa GG; Picão BW; Mack M; Cerri MO; Pedrolli DB
    Metab Eng; 2021 Nov; 68():59-67. PubMed ID: 34517126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Riboswitch-mediated regulation of riboflavin biosynthesis genes in prokaryotes.
    Vikram ; Mishra V; Rana A; Ahire JJ
    3 Biotech; 2022 Oct; 12(10):278. PubMed ID: 36275359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Riboswitches: the oldest mechanism for the regulation of gene expression?
    Vitreschak AG; Rodionov DA; Mironov AA; Gelfand MS
    Trends Genet; 2004 Jan; 20(1):44-50. PubMed ID: 14698618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotechnology of riboflavin.
    Schwechheimer SK; Park EY; Revuelta JL; Becker J; Wittmann C
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2107-19. PubMed ID: 26758294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Re-engineering of a Transcriptional Silencing PreQ1 Riboswitch.
    Wu MC; Lowe PT; Robinson CJ; Vincent HA; Dixon N; Leigh J; Micklefield J
    J Am Chem Soc; 2015 Jul; 137(28):9015-21. PubMed ID: 26106809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
    Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M
    Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression.
    Lee ER; Blount KF; Breaker RR
    RNA Biol; 2009; 6(2):187-94. PubMed ID: 19246992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges of ligand identification for riboswitch candidates.
    Meyer MM; Hammond MC; Salinas Y; Roth A; Sudarsan N; Breaker RR
    RNA Biol; 2011; 8(1):5-10. PubMed ID: 21317561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Five Purine Riboswitches in Cellular and Cell-Free Expression Systems.
    Lins MRDCR; Corrêa GG; Amorim LADS; Franco RAL; Ribeiro NV; Jesus VN; Pedrolli DB
    Curr Microbiol; 2022 May; 79(7):207. PubMed ID: 35622174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis.
    Wang G; Shi T; Chen T; Wang X; Wang Y; Liu D; Guo J; Fu J; Feng L; Wang Z; Zhao X
    Metab Eng; 2018 Jul; 48():138-149. PubMed ID: 29864583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms.
    Lemay JF; Desnoyers G; Blouin S; Heppell B; Bastet L; St-Pierre P; Massé E; Lafontaine DA
    PLoS Genet; 2011 Jan; 7(1):e1001278. PubMed ID: 21283784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria.
    Mandal M; Boese B; Barrick JE; Winkler WC; Breaker RR
    Cell; 2003 May; 113(5):577-86. PubMed ID: 12787499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Engineered PreQ1 Riboswitches for Inducible Gene Regulation in Mycobacteria.
    Van Vlack ER; Topp S; Seeliger JC
    J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28069821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and antimicrobial action of purine analogues that bind Guanine riboswitches.
    Kim JN; Blount KF; Puskarz I; Lim J; Link KH; Breaker RR
    ACS Chem Biol; 2009 Nov; 4(11):915-27. PubMed ID: 19739679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.