These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32413514)

  • 41. Scatter Reduction and Correction for Dual-Source Cone-Beam CT Using Prepatient Grids.
    Ren L; Chen Y; Zhang Y; Giles W; Jin J; Yin FF
    Technol Cancer Res Treat; 2016 Jun; 15(3):416-27. PubMed ID: 26009495
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dose-image quality optimisation in digital chest radiography.
    Doyle P; Martin CJ; Gentle D
    Radiat Prot Dosimetry; 2005; 114(1-3):269-72. PubMed ID: 15933120
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improvement of image quality applying iterative scatter correction for grid-less skeletal radiography in trauma room setting.
    Lisson CG; Lisson CS; Vogele D; Strauss B; Schuetze K; Cintean R; Beer M; Schmidt SA
    Acta Radiol; 2020 Jun; 61(6):768-775. PubMed ID: 31569948
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-dimensional antiscatter grid: A novel scatter rejection device for Cone-beam computed tomography.
    Alexeev T; Kavanagh B; Miften M; Altunbas C
    Med Phys; 2018 Feb; 45(2):529-534. PubMed ID: 29235120
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Using aluminum for scatter control in mammography: preliminary work using measurements of CNR and FOM.
    Al Khalifah K; Davidson R; Zhou A
    Radiol Phys Technol; 2020 Mar; 13(1):37-44. PubMed ID: 31749130
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Effect of Interspaces of Anti-scatter Grid on the Image Improvement Factor].
    Saito H; Asano H; Miyake H; Nakamura H; Imai Y; Ogura I; Negishi T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2018; 74(10):1186-1193. PubMed ID: 30344216
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Iterative scatter correction for grid-less skeletal radiography allows improved image quality equal to an antiscatter grid in adjunct with dose reduction: a visual grading study of 20 body donors.
    Lisson CG; Lisson CS; Kleiner S; Regier M; Beer M; Schmidt SA
    Acta Radiol; 2019 Jun; 60(6):735-741. PubMed ID: 30149748
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The principles and effectiveness of X-ray scatter correction software for diagnostic X-ray imaging: A scoping review.
    Sayed M; Knapp KM; Fulford J; Heales C; Alqahtani SJ
    Eur J Radiol; 2023 Jan; 158():110600. PubMed ID: 36444818
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A framework for optimising the radiographic technique in digital X-ray imaging.
    Samei E; Dobbins JT; Lo JY; Tornai MP
    Radiat Prot Dosimetry; 2005; 114(1-3):220-9. PubMed ID: 15933112
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Monte Carlo study of grid performance in diagnostic radiology: factors which affect the selection of tube potential and grid ratio.
    Sandborg M; Dance DR; Carlsson GA; Persliden J
    Br J Radiol; 1993 Dec; 66(792):1164-76. PubMed ID: 8293262
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anti-scatter grid artifact elimination for high resolution x-ray imaging CMOS detectors.
    Rana R; Singh V; Jain A; Bednarek DR; Rudin S
    Proc SPIE Int Soc Opt Eng; 2015; 9412():. PubMed ID: 26877578
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Bedside thoracic radiography: a comparison between 3 different types of grid].
    Ciccotosto C; Storto ML; Guidotti A; Ferrante R; Bonomo L
    Radiol Med; 1994; 87(1-2):127-33. PubMed ID: 8128015
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simulation of image detectors in radiology for determination of scatter-to-primary ratios using Monte Carlo radiation transport code MCNP/MCNPX.
    Smans K; Zoetelief J; Verbrugge B; Haeck W; Struelens L; Vanhavere F; Bosmans H
    Med Phys; 2010 May; 37(5):2082-91. PubMed ID: 20527541
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The value of scatter removal by a grid in full field digital mammography.
    Veldkamp WJ; Thijssen MA; Karssemeijer N
    Med Phys; 2003 Jul; 30(7):1712-8. PubMed ID: 12906188
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conversion of mammographic images to appear with the noise and sharpness characteristics of a different detector and x-ray system.
    Mackenzie A; Dance DR; Workman A; Yip M; Wells K; Young KC
    Med Phys; 2012 May; 39(5):2721-34. PubMed ID: 22559643
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new software scheme for scatter correction based on a simple radiographic scattering model.
    Kim K; Kang S; Kim W; Park C; Lee D; Cho H; Kang W; Park S; Kim G; Lim H; Lee H; Park J; Jeon D; Lim Y; Woo T; Oh J
    Med Biol Eng Comput; 2019 Feb; 57(2):489-503. PubMed ID: 30232700
    [TBL] [Abstract][Full Text] [Related]  

  • 57. EVALUATION OF DOSE REDUCTION POTENTIALS OF A NOVEL SCATTER CORRECTION SOFTWARE FOR BEDSIDE CHEST X-RAY IMAGING.
    Renger B; Brieskorn C; Toth V; Mentrup D; Jockel S; Lohöfer F; Schwarz M; Rummeny EJ; Noël PB
    Radiat Prot Dosimetry; 2016 Jun; 169(1-4):60-7. PubMed ID: 26977074
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiscale image processing and antiscatter grids in digital radiography.
    Lo WY; Hornof WJ; Zwingenberger AL; Robertson ID
    Vet Radiol Ultrasound; 2009; 50(6):569-76. PubMed ID: 19999338
    [TBL] [Abstract][Full Text] [Related]  

  • 59. X-ray scatter in megavoltage transmission radiography: physical characteristics and influence on image quality.
    Jaffray DA; Battista JJ; Fenster A; Munro P
    Med Phys; 1994 Jan; 21(1):45-60. PubMed ID: 8164588
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of scatter in digital mammography from physical measurements.
    Leon SM; Brateman LF; Wagner LK
    Med Phys; 2014 Jun; 41(6):061901. PubMed ID: 24877812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.