BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 32413515)

  • 1. Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information.
    Li F; Leier A; Liu Q; Wang Y; Xiang D; Akutsu T; Webb GI; Smith AI; Marquez-Lago T; Li J; Song J
    Genomics Proteomics Bioinformatics; 2020 Feb; 18(1):52-64. PubMed ID: 32413515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.
    Song J; Tan H; Perry AJ; Akutsu T; Webb GI; Whisstock JC; Pike RN
    PLoS One; 2012; 7(11):e50300. PubMed ID: 23209700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy.
    Song J; Li F; Leier A; Marquez-Lago TT; Akutsu T; Haffari G; Chou KC; Webb GI; Pike RN; Hancock J
    Bioinformatics; 2018 Feb; 34(4):684-687. PubMed ID: 29069280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites.
    Song J; Wang Y; Li F; Akutsu T; Rawlings ND; Webb GI; Chou KC
    Brief Bioinform; 2019 Mar; 20(2):638-658. PubMed ID: 29897410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods.
    Li F; Wang Y; Li C; Marquez-Lago TT; Leier A; Rawlings ND; Haffari G; Revote J; Akutsu T; Chou KC; Purcell AW; Pike RN; Webb GI; Ian Smith A; Lithgow T; Daly RJ; Whisstock JC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2150-2166. PubMed ID: 30184176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatic approaches for predicting substrates of proteases.
    Song J; Tan H; Boyd SE; Shen H; Mahmood K; Webb GI; Akutsu T; Whisstock JC; Pike RN
    J Bioinform Comput Biol; 2011 Feb; 9(1):149-78. PubMed ID: 21328711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites.
    Li F; Chen J; Leier A; Marquez-Lago T; Liu Q; Wang Y; Revote J; Smith AI; Akutsu T; Webb GI; Kurgan L; Song J
    Bioinformatics; 2020 Feb; 36(4):1057-1065. PubMed ID: 31566664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale Structure-Based Prediction and Identification of Novel Protease Substrates Using Computational Protein Design.
    Pethe MA; Rubenstein AB; Khare SD
    J Mol Biol; 2017 Jan; 429(2):220-236. PubMed ID: 27932294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ProsperousPlus: a one-stop and comprehensive platform for accurate protease-specific substrate cleavage prediction and machine-learning model construction.
    Li F; Wang C; Guo X; Akutsu T; Webb GI; Coin LJM; Kurgan L; Song J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37874948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PoPS: a computational tool for modeling and predicting protease specificity.
    Boyd SE; Pike RN; Rudy GB; Whisstock JC; Garcia de la Banda M
    J Bioinform Comput Biol; 2005 Jun; 3(3):551-85. PubMed ID: 16108084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protease specificity profiling by tandem mass spectrometry using proteome-derived peptide libraries.
    Schilling O; auf dem Keller U; Overall CM
    Methods Mol Biol; 2011; 753():257-72. PubMed ID: 21604128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of HIV-1 protease cleavage site using a combination of sequence, structural, and physicochemical features.
    Singh O; Su EC
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):478. PubMed ID: 28155640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Proteases Involved in Peptide Generation.
    Casteleiro MA; Stevens R; Klein J
    Methods Mol Biol; 2017; 1574():205-213. PubMed ID: 28315253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PoPS: a computational tool for modeling and predicting protease specificity.
    Boyd SE; Garcia de la Banda M; Pike RN; Whisstock JC; Rudy GB
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():372-81. PubMed ID: 16448030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolysis to Identify Protease Substrates: Cleave to Decipher.
    Bhagwat SR; Hajela K; Kumar A
    Proteomics; 2018 Jul; 18(13):e1800011. PubMed ID: 29710386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation.
    Rawlings ND
    Biochimie; 2016 Mar; 122():5-30. PubMed ID: 26455268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling of Protease Cleavage Sites by Proteome-Derived Peptide Libraries and Quantitative Proteomics.
    Chen CY; Mayer B; Schilling O
    Methods Mol Biol; 2017; 1574():197-204. PubMed ID: 28315252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protease substrate site predictors derived from machine learning on multilevel substrate phage display data.
    Chen CT; Yang EW; Hsu HJ; Sun YK; Hsu WL; Yang AS
    Bioinformatics; 2008 Dec; 24(23):2691-7. PubMed ID: 18974075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protease substrates using sequence and structure features.
    Barkan DT; Hostetter DR; Mahrus S; Pieper U; Wells JA; Craik CS; Sali A
    Bioinformatics; 2010 Jul; 26(14):1714-22. PubMed ID: 20505003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.