BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 32413575)

  • 1. Dodonaea viscosa var angustifolia derived 5,6,8-trihydroxy-7,4' dimethoxy flavone inhibits ergosterol synthesis and the production of hyphae and biofilm in Candida albicans.
    Patel M; Srivastava V; Ahmad A
    J Ethnopharmacol; 2020 Sep; 259():112965. PubMed ID: 32413575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-acidogenic and anti-biofilm activity of 5,6,8-trihydroxy-7-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one.
    Ngabaza T; Moeno S; Patel M
    Microb Pathog; 2018 Oct; 123():149-152. PubMed ID: 30008421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifungal potential of Sideroxylon obtusifolium and Syzygium cumini and their mode of action against Candida albicans.
    Pereira JV; Freires IA; Castilho AR; da Cunha MG; Alves Hda S; Rosalen PL
    Pharm Biol; 2016 Oct; 54(10):2312-9. PubMed ID: 26987037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal activity of the plant Dodonaea viscosa var. angustifolia on Candida albicans from HIV-infected patients.
    Patel M; Coogan MM
    J Ethnopharmacol; 2008 Jun; 118(1):173-6. PubMed ID: 18448291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp.
    Peixoto LR; Rosalen PL; Ferreira GL; Freires IA; de Carvalho FG; Castellano LR; de Castro RD
    Arch Oral Biol; 2017 Jan; 73():179-185. PubMed ID: 27771586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth.
    Haque F; Alfatah M; Ganesan K; Bhattacharyya MS
    Sci Rep; 2016 Mar; 6():23575. PubMed ID: 27030404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-acidogenic, anti-biofilm and slow release properties of Dodonaea viscosa var. angustifolia flavone stabilized polymeric nanoparticles.
    Sebelemetja M; Moeno S; Patel M
    Arch Oral Biol; 2020 Jan; 109():104586. PubMed ID: 31630005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-Asarone, an active principle of Acorus calamus rhizome, inhibits morphogenesis, biofilm formation and ergosterol biosynthesis in Candida albicans.
    Rajput SB; Karuppayil SM
    Phytomedicine; 2013 Jan; 20(2):139-42. PubMed ID: 23123225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Candida albicans yeast-hyphal transition and biofilm formation by Solidago virgaurea water extracts.
    Chevalier M; Medioni E; Prêcheur I
    J Med Microbiol; 2012 Jul; 61(Pt 7):1016-1022. PubMed ID: 22422572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium deprivation affects cellular circuitry involved in drug resistance and virulence in Candida albicans.
    Hans S; Fatima Z; Hameed S
    J Glob Antimicrob Resist; 2019 Jun; 17():263-275. PubMed ID: 30659981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of
    Lee HS; Kim Y
    J Microbiol Biotechnol; 2018 Mar; 28(3):482-490. PubMed ID: 29316739
    [No Abstract]   [Full Text] [Related]  

  • 12. Aripiprazole repurposed as an inhibitor of biofilm formation and sterol biosynthesis in multidrug-resistant Candida albicans.
    Rajasekharan SK; Lee JH; Lee J
    Int J Antimicrob Agents; 2019 Oct; 54(4):518-523. PubMed ID: 31173863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dodonaea viscosa var. angustifolia Inhibits Germ Tube and Biofilm Formation by C. albicans.
    Naicker SD; Patel M
    Evid Based Complement Alternat Med; 2013; 2013():261978. PubMed ID: 24223612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress induced by piperine leads to apoptosis in Candida albicans.
    Thakre A; Jadhav V; Kazi R; Shelar A; Patil R; Kharat K; Zore G; Karuppayil SM
    Med Mycol; 2021 Apr; 59(4):366-378. PubMed ID: 32658959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of Dodonaea viscosa var. angustifolia on Candida albicans proteinase and phospholipase production and adherence to oral epithelial cells.
    Patel M; Gulube Z; Dutton M
    J Ethnopharmacol; 2009 Jul; 124(3):562-5. PubMed ID: 19450675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time microscopic observation of Candida biofilm development and effects due to micafungin and fluconazole.
    Kaneko Y; Miyagawa S; Takeda O; Hakariya M; Matsumoto S; Ohno H; Miyazaki Y
    Antimicrob Agents Chemother; 2013 May; 57(5):2226-30. PubMed ID: 23459484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenylpropanoids of plant origin as inhibitors of biofilm formation by Candida albicans.
    Raut JS; Shinde RB; Chauhan NM; Karuppayil SM
    J Microbiol Biotechnol; 2014 Sep; 24(9):1216-25. PubMed ID: 24851813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Garcinia xanthochymus Benzophenones Promote Hyphal Apoptosis and Potentiate Activity of Fluconazole against Candida albicans Biofilms.
    Jackson DN; Yang L; Wu S; Kennelly EJ; Lipke PN
    Antimicrob Agents Chemother; 2015 Oct; 59(10):6032-8. PubMed ID: 26195512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effects of Tormentic Acid and Extracts from
    Bvumbi C; Chi GF; Stevens MY; Mombeshora M; Mukanganyama S
    ScientificWorldJournal; 2021; 2021():8856147. PubMed ID: 34594161
    [No Abstract]   [Full Text] [Related]  

  • 20. A new acridone with antifungal properties against Candida spp. and dermatophytes, and antibiofilm activity against C. albicans.
    de Oliveira DBC; Silva LB; da Silva BV; Borges TC; Marques BC; Dos Santos MB; de Oliveira LF; Bolzani VS; Rodrigues ARA; Regasini LO; Andrade AA
    J Appl Microbiol; 2019 Nov; 127(5):1362-1372. PubMed ID: 31297951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.